...
首页> 外文期刊>Plastic and reconstructive surgery >Microscale electrode implantation during nerve repair: effects on nerve morphology, electromyography, and recovery of muscle contractile function.
【24h】

Microscale electrode implantation during nerve repair: effects on nerve morphology, electromyography, and recovery of muscle contractile function.

机译:神经修复过程中的微型电极植入:对神经形态,肌电图和肌肉收缩功能的恢复的影响。

获取原文
获取原文并翻译 | 示例

摘要

BACKGROUND: The authors' goal is to develop a peripheral nerve electrode with long-term stability and fidelity for use in nerve/machine interfaces. Microelectromechanical systems use silicon probes that contain multichannel actuators, sensors, and electronics. The authors tested the null hypothesis that implantation of microelectromechanical systems probes does not have a detrimental effect on peripheral nerve function or regeneration. METHODS: A rat hind-limb, peroneal nerve model was used in all experimental groups: intact nerve (control group, n=10); nerve division and repair (repair group, n=9); and nerve division, insertion of microelectromechanical systems probe, and repair (repair plus probe group, n=9). Nerve morphology, nerve to compound muscle action potential studies, walking tracks, and extensor digitorum longus muscle function tests were evaluated following an 80-day recovery. RESULTS: Repair and repair plus probe showed no differences in axon count, axon size, percentage nonneural area, compound muscle action potential amplitude, latency, muscle mass, muscle force, or walking track scores. Although there was some local fibrosis around each microelectromechanical systems probe, this did not lead to measurable detrimental effects in any anatomical or functional outcome measurements. CONCLUSION: The absence of a significant difference between the repair and the repair plus probe groups regarding histology, compound muscle action potential, walking tracks, and muscle force suggests that microelectromechanical systems electrodes are compatible with regenerating axons and show promise for establishing chemical and electrical interfaces with peripheral nerves.
机译:背景:作者的目标是开发一种具有长期稳定性和保真度的神经电极,用于神经/机器界面。微机电系统使用包含多通道执行器,传感器和电子设备的硅探针。作者检验了零假设,即微机电系统探针的植入不会对周围神经功能或再生产生不利影响。方法:在所有实验组中使用大鼠后肢腓骨神经模型:完整神经(对照组,n = 10);完整神经(对照组,n = 10)。神经分裂和修复(修复组,n = 9);以及神经分裂,微机电系统探头的插入和修复(修复加探头组,n = 9)。在恢复80天后,评估了神经形态,神经对复合肌的动作潜能研究,步行轨迹和趾长伸肌功能测试。结果:修复和修复加探针显示在轴突计数,轴突大小,非神经区域百分比,复合肌肉动作电位振幅,潜伏期,肌肉质量,肌肉力量或步行轨迹得分方面无差异。尽管每个微机电系统探头周围都有局部纤维化,但这在任何解剖或功能结果测量中均未导致可测量的有害影响。结论:修复组和修复组与探针组之间在组织学,复合肌肉动作电位,行走轨迹和肌肉力方面没有显着差异,这表明微机电系统的电极与再生轴突兼容,并显示出建立化学和电气界面的希望与周围的神经。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号