首页> 外文期刊>Polymer: The International Journal for the Science and Technology of Polymers >Kinetics of pressure-induced phase separation (PIPS) from polymer solutions by time-resolved light scattering. Polyethylene plus n-pentane
【24h】

Kinetics of pressure-induced phase separation (PIPS) from polymer solutions by time-resolved light scattering. Polyethylene plus n-pentane

机译:通过时间分辨光散射从聚合物溶液中引起压力诱导相分离(PIPS)的动力学。聚乙烯加正戊烷

获取原文
获取原文并翻译 | 示例
           

摘要

Kinetics of pressure-induced phase separation (PIPS) in solutions of polyethylene + n-pentane at high pressures have been investigated using a novel experimental system which permits imposing controlled, multiple rapid land repetitive) pressure quenches of different penetration depths into the region of immiscibility of the system. The evolution of new phase formation is monitored by time-resolved light scattering using a fibre optic scattering cell as a function of the depth of penetration into the two-phase regions. It is shown that the rate of change in the scattered light intensities increases with quench depth, becoming very fast and eventually reaches an apparent limiting value for quenches below a characteristic penetration depth. Determination of these quench pressures below which phase separation is extremely rapid identifies a kinetic phase separation boundary below the binodal pressures which is of practical significance. This is because pressure-induced phase separation by rapid expansion is an important step in processing of materials such as polymers with near-and supercritical fluids. The results are shown for liquid-liquid phase separation for polyethylene solutions of two different molecular weights (108 000 and 16 400) in n-pentane subjected to pressure quenches as deep as 10 MPa. (C) 1998 Elsevier Science Ltd. All rights reserved. [References: 63]
机译:使用新型实验系统研究了聚乙烯+正戊烷在高压下在溶液中的压力诱导相分离(PIPS)动力学,该系统允许将不同渗透深度的受控,多重快速陆地重复)压力淬灭施加到不混溶区域中系统的。通过使用光纤散射池通过时间分辨的光散射来监测新相形成的演变,该散射是进入两相区域的深度的函数。结果表明,散射光强度的变化率随淬火深度的增加而增加,变得非常快,并最终达到低于特征穿透深度的淬火的明显极限值。确定这些骤冷压力,在该骤冷压力以下,相分离是非常快速的,这确定了在二项式压力以下的动力学相分离边界,这具有实际意义。这是因为通过快速膨胀进行压力诱导的相分离是加工材料(例如具有近临界流体和超临界流体的聚合物)中的重要步骤。结果显示了对两种不同分子量(108 000和16 400)在正戊烷中的聚乙烯溶液进行液淬至10 MPa的压力骤冷的液-液相分离。 (C)1998 Elsevier ScienceLtd。保留所有权利。 [参考:63]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号