...
首页> 外文期刊>The Journal of Supercritical Fluids >Kinetics of pressure-induced phase separation (PIPS) in solutions of polydimethylsiloxane in supercritical carbon dioxide: crossover from nucleation and growth to spinodal decomposition mechanism
【24h】

Kinetics of pressure-induced phase separation (PIPS) in solutions of polydimethylsiloxane in supercritical carbon dioxide: crossover from nucleation and growth to spinodal decomposition mechanism

机译:聚二甲基硅氧烷在超临界二氧化碳溶液中的压力诱导相分离动力学:从成核和生长到旋节线分解机理的交叉

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The kinetics of pressure-induced phase separation (PIPS) in solutions of polydimethylsiloxane (M_W=94 300; PDI=2.99) in supercritical carbon dioxide have been studied using time- and angle-resolved light scattering. Controlled pressure quench experiments were conducted at different polymer concentrations (0.38, 0.9, 1.9, 2.5, 3.9, 5.5% by mass) to determine both the binodal and spinodal envelopes, and the critical polymer concentration. At each concentration, a series of rapid pressure quenches with different depths of penetration into the region of immiscibility was imposed and the time evolutions of the scattered light intensities were followed to determine the pressure below which the mechanism changes from `nucleation and growth' to `spinodal decomposition'. This crossover is identified from the characteristic fingerprint scattering patterns associated with each mechanism. The spinodal decomposition process is characterized by the formation and evolution of a spinodal ring during phase separation that leads to a maximum in the angular variation of the scattered light intensity. The nucleation and growth mechanism is characterized by the absence of such a maximum and the continual decrease of the scattered light intensities with increasing angles. The time scale of PIPS is shown to be relatively short. The late stage of phase separation is entered within seconds. For quenches leading to spinodal decomposition, the characteristic wave number q_m corresponding to the scattered light intensity maximum I_m is observed to be non-stationary, moving to lower wave numbers after a very short elapsed time. The growth of domain sizes is observed to follow power-law-type scaling with q_m approx=t~(-#alpha#) and I_m approx=t~#bate# with #bate#approx=2#alpha#.
机译:使用时间和角度分辨光散射研究了聚二甲基硅氧烷(M_W = 94 300; PDI = 2.99)在超临界二氧化碳溶液中的压力诱导相分离(PIPS)的动力学。在不同的聚合物浓度(0.38%,0.9%,1.9%,2.5%,3.9%,5.5%质量)下进行受控压力淬火实验,以确定双斜面和旋节线的包膜以及临界聚合物浓度。在每个浓度下,施加一系列快速的压力淬灭,并以不同的渗透深度进入不溶混区域,并根据散射光强度的时间演变确定压力,在该压力以下该机理从“成核和生长”变为“成核”。旋节线分解”。从与每种机制相关联的特征指纹散射图案中识别出这种交叉。旋节线分解过程的特征在于在相分离期间旋节线环的形成和演化,这导致散射光强度的角度变化最大。成核和生长机理的特征在于不存在这样的最大值,并且散射光强度随着角度的增加而持续降低。 PIPS的时间范围显示相对较短。相分离的后期在几秒钟内输入。对于导致旋节线分解的淬火,观察到与散射光强度最大值I_m相对应的特征波数q_m是非平稳的,在经过很短的时间后移至较低的波数。观察到域大小的增长遵循幂律型缩放,其中q_m近似= t〜(-#alpha#)和I_m近似= t〜#bate#且#bate#approx = 2#alpha#。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号