...
首页> 外文期刊>Polymer: The International Journal for the Science and Technology of Polymers >Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization
【24h】

Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization

机译:原位聚合制备PVC / CaCO3纳米复合材料的流变和力学性能

获取原文
获取原文并翻译 | 示例

摘要

Poly(vinyl chloride) (PVC)/calcium carbonate (CaCO3) nanocomposites were synthesized by in situ polymerization of vinyl chloride (VC) in the presence of CaCO3 nanoparticles. Their thermal, theological and mechanical properties were evaluated by dynamic mechanical analysis (DMA), thermogravimetry analysis (TGA), capillary rheometry, tensile and impact fracture tests. The results showed that CaCO3 nanoparticles were uniformly distributed in the PVC matrix during in situ polymerization of VC with 5.0 wt% or less nanoparticles. The glass transition and thermal decomposition temperatures of PVC phase in PVC/CaCO3 nanocomposites are shifted toward higher temperatures by the restriction of CaCO3 nanoparticles on the segmental and long-range chain mobility of the PVC phase. The nanocomposites showed shear thinning and power law behaviors. The 'ball bearing' effect of the spherical nanoparticles decreased the apparent viscosity of the PVC/CaCO3 nanocomposite melts, and the viscosity sensitivity on shear rate of the PVC/CaCO3 nanocomposite is higher than that of pristine PVC. Moreover, CaCO3 nanoparticles stiffen and toughen PVC simultaneously, and optimal properties were achieved at 5 wt% of CaCO3 nanoparticles in Young's modulus, tensile yield strength, elongation at break and Charpy notched impact energy. Detailed examinations of micro-failure micromechanisms of impact and tensile specimens showed that the CaCO3 nanoparticles acted as stress raisers leading to debonding/voiding and deformation of the matrix material around the nanoparticles. These mechanisms also lead to impact toughening of the nanocomposites. (C) 2004 Elsevier Ltd. All rights reserved.
机译:聚氯乙烯(PVC)/碳酸钙(CaCO3)纳米复合材料是通过在CaCO3纳米粒子存在下原位聚合氯乙烯(VC)来合成的。通过动态力学分析(DMA),热重分析(TGA),毛细管流变学,拉伸和冲击断裂试验评估了它们的热,神学和力学性能。结果表明,在含有5.0 wt%或更少纳米颗粒的VC原位聚合过程中,CaCO3纳米颗粒均匀地分布在PVC基体中。由于CaCO3纳米颗粒对PVC相的分段和长链迁移率的限制,PVC / CaCO3纳米复合材料中PVC相的玻璃化转变温度和热分解温度向较高的温度移动。纳米复合材料表现出剪切稀化和幂律行为。球形纳米颗粒的“滚珠”效应降低了PVC / CaCO3纳米复合材料熔体的表观粘度,并且对PVC / CaCO3纳米复合材料的剪切速率的粘度敏感性高于原始PVC。此外,CaCO3纳米粒子同时使PVC变硬和增韧,并且在5 wt%的CaCO3纳米粒子的杨氏模量,拉伸屈服强度,断裂伸长率和夏比缺口冲击能方面获得了最佳性能。冲击试样和拉伸试样的微观破坏微观机制的详细检查表明,CaCO3纳米粒子充当应力增强剂,导致纳米粒子周围的基体材料脱粘/空隙和变形。这些机制还导致纳米复合材料的冲击增韧。 (C)2004 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号