...
首页> 外文期刊>Chemistry: A European journal >The Ozonolysis of Ethylene: A Theoretical Study of the Gas-Phase Reaction Mechanism
【24h】

The Ozonolysis of Ethylene: A Theoretical Study of the Gas-Phase Reaction Mechanism

机译:乙烯的臭氧分解:气相反应机理的理论研究

获取原文
获取原文并翻译 | 示例

摘要

The gas-phase reaction mechanism of ethylene ozonolysis has been investigated from a theoretical point of view. The formation of the ethylene primary ozonide (1, 2, 3-trioxolane, POZ) from the ozone-ethylene reaction is calculated to be exothermic by 49.2 kcal mol~(-1) with an activation energy of 5.0 kcal mol~(-1) at 0 K, in agreement with experimental estimates. We have found two different paths for the cleavage of POZ, namely a concerted and a stepwise mechanism. The concerted path leads to the formation of Criegee intermediates (carbonyl oxide-formaldehyde pairs), for which we have calculated an activation energy of 18.7 kcal mol~(-1) at 0 K. The non-concerted mechanism involves three different routes for the POZ decomposition, leading to the formation of Criegee intermediates with a computed activation energy of 21.6 kcal mol~(-1) at 0 K; to hydroperoxyacetaldehyde with a calculated activation energy of 22.8 kcal mol~(-1) at 0 K; and to oxirane + excited molecular oxygen (~1 #DELTA#_g) with a higher activation energy. Moreover, hydroperoxyacetaldehyde is formed with an excess of energy, so that it can decompose yielding OH radicals. The reaction of carbonyl oxide and formaldehyde produces the ethylene secondary ozonide (1, 2, 4-trioxolane, SOZ) and involves the formation of a van der Waals complex on the reaction coordinate, prior to the transition state. The process is calculated to be exothermic by 46.0 kcal mol~(-1) and the energy of the transition state is computed to be lower than that of the reactants: this process can therefore be considered barrierless. SOZ cleaves by a stepwise mechanism and we have found two different fates for its decomposition: dioxymethane + formaldehyde, and hydroxymethyl formate. The former is calculated to be endothermic by 33.3 kcal mol~(-1) with an energy barrier of 48.7 kcal mol~(-1), whereas the tautomerization of SOZ leading to hydroxymethyl formate is highly exothermic (72.2 kcal mol~(-1)) and has an activation energy of 32.6 kcal mol~(-1) at 0 K. The unimolecular decomposition of dioxymethane, following three different paths, is also reported: dissociation into CO_2 + H_2, which is highly exothermic (111.6 kcal mol~(-1)) and has a low energy barrier (3.0 kacl cm~(-1)); isomerization to formic acid, also highly exothermic (101.9 kcal mol~(-1)) with a low activation energy (2.2 kcal mol~(-1) at 0 K); and radical fragmentation into H + HCOO, in a slightly endothermic process (4.9 kcal mol~(-1)) with an activation energy of 18.4 kcal mol~(-1) at 0 K. The dissociation of formic acid into H_2, CO_2, CO and H_2O and the decomposition of HCOO into H radicals + CO_2 are also discussed.
机译:从理论的角度研究了乙烯臭氧分解的气相反应机理。计算得出,臭氧-乙烯反应生成的乙烯伯恶臭化物(1,2,3-三氧戊环,POZ)以49.2 kcal mol〜(-1)放热,活化能为5.0 kcal mol〜(-1 )在0 K,与实验估算值一致。我们发现了裂解POZ的两种不同途径,即协同作用和逐步作用机制。一致的路径导致Criegee中间体(碳氧化合物-甲醛对)的形成,为此我们计算出其在0 K时的活化能为18.7 kcal mol〜(-1)。 POZ分解,导致Criegee中间体的形成,其在0 K时的计算活化能为21.6 kcal mol〜(-1);以0 K计算的活化能为22.8 kcal mol〜(-1)。以及具有较高活化能的环氧乙烷+激发的分子氧(〜1#DELTA#_g)。而且,氢过氧乙醛以过量的能量形成,因此它可以分解产生OH基。羰基氧化物与甲醛的反应生成亚乙基仲氧化物(1,2,4-三氧戊环,SOZ),并在过渡态之前在反应坐标上形成范德华配合物。该过程被计算为放热为46.0 kcal mol〜(-1),过渡态的能量被计算为低于反应物的能量:因此,该过程可以被认为是无障碍的。 SOZ通过逐步机理裂解,我们发现其分解有两种不同的命运:二氧甲烷+甲醛和羟甲基甲酸酯。前者经计算为33.3 kcal mol〜(-1)吸热,能垒为48.7 kcal mol〜(-1),而SOZ的互变异构导致羟甲基甲酸的放热高度放热(72.2 kcal mol〜(-1) )),并在0 K时具有32.6 kcal mol〜(-1)的活化能。还报道了沿着三种不同途径的二氧甲烷单分子分解:分解成高度放热的CO_2 + H_2(111.6 kcal mol〜(-1))。 (-1))且能量垒低(3.0 kacl cm〜(-1));异构化为甲酸,也放热(101.9 kcal mol〜(-1)),活化能低(0 K下为2.2 kcal mol〜(-1));并在轻微吸热过程中(4.9 kcal mol〜(-1))在0 K时的活化能为18.4 kcal mol〜(-1)自由基裂解成H + HCOO。甲酸分解为H_2,CO_2,还讨论了CO和H_2O以及HCOO分解为H自由基+ CO_2的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号