首页> 外文期刊>Chemistry: A European journal >Radial-Position-Controlled Doping of CdS/ZnS Core/Shell Nanocrystals: Surface Effects and Position-Dependent Properties
【24h】

Radial-Position-Controlled Doping of CdS/ZnS Core/Shell Nanocrystals: Surface Effects and Position-Dependent Properties

机译:CdS / ZnS核/壳纳米晶体的径向位置控制掺杂:表面效应和位置相关的特性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper reports a study of the surface effects and position-dependent properties of Mn-doped CdS/ZnS core/shell nanocrystals, which were prepared by using a three-step synthesis method. The Mn-doping level of these nanocrystals was determined by a combination of electron paramagnetic resonance spectroscopy and inductively coupled plasma atomic emission spectroscopy.These nanocrystals were further characterized by using transmission electron microscopy and fluorescence spectroscopy. First, we found that injecting a large excess of zinc stearate at the end of nanocrystal synthesis can sufficiently eliminate the surface- trap states from the doped CdS/ ZnS core/shell nanocrystals and enhance their photoluminescence (PL) quantum yield (QY). Second, our results demonstrate that the Mn-PL QY is determined by the product of the efficiency of energy transfer from an exciton inside the CdS core to a Mn ion (FET) and the efficiency of the emission from the Mn ion (FMn). Third, FMn strongly depends on the radial position of Mn ions in the doped core/ shell nanocrystals. The position-dependent changes of FMn nearly perfectly correlate to those of the linewidth of Mn EPR peaks: the higher the FMn, the narrower the linewidth of the Mn EPR peak. Fourth, the results demonstrate that FET depends on the Mndoping level as well as the inverse sixth power of the distance between a Mn ion and the center of its host nanocrystal. Accordingly, we propose a two-step mechanism for the energy transfer: 1) the energy transfer from an exciton inside the CdS core to a bound exciton around a Mn center, which is the ratedetermining step and follows the FCrster mechanism, and 2) the energy transfer from the bound exciton to the Mn center, which might follow a mechanism such as dark exciton (triplet exciton) or Auger transfer
机译:本文报道了通过三步合成法制备的Mn掺杂的CdS / ZnS核/壳纳米晶体的表面效应和位置依赖性的研究。这些纳米晶体的Mn掺杂水平是通过电子顺磁共振光谱法和电感耦合等离子体原子发射光谱法确定的。这些纳米晶体通过透射电子显微镜和荧光光谱进一步表征。首先,我们发现在纳米晶体合成结束时注入大量过量的硬脂酸锌可以充分消除掺杂的CdS / ZnS核/壳纳米晶体的表面陷阱态,并增强其光致发光(PL)量子产率(QY)。其次,我们的结果表明Mn-PL QY由从CdS核内部的激子到Mn离子(FET)的能量转移效率与Mn离子(FMn)的发射效率的乘积确定。第三,FMn强烈取决于掺杂的核/壳纳米晶体中Mn离子的径向位置。 FMn的位置相关变化几乎与Mn EPR峰的线宽相关:FMn越高,Mn EPR峰的线宽越窄。第四,结果表明,FET取决于Mn掺杂水平以及Mn离子与其主体纳米晶体中心之间的距离的六次方倒数。因此,我们提出了能量转移的两步机制:1)从CdS核内的激子到Mn中心周围的束缚激子的能量转移,这是额定的确定步骤,遵循FCrster机制,并且2)从束缚激子到Mn中心的能量转移,可能遵循暗激子(三重态激子)或俄歇转移

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号