...
首页> 外文期刊>Ultramicroscopy >4D ultrafast electron microscopy: Imaging of atomic motions, acoustic resonances, and moire fringe dynamics
【24h】

4D ultrafast electron microscopy: Imaging of atomic motions, acoustic resonances, and moire fringe dynamics

机译:4D超快速电子显微镜:原子运动,声共振和莫尔条纹动态成像

获取原文
获取原文并翻译 | 示例
           

摘要

In four-dimensional (4D) ultrafast electron microscopy (UEM), timed-pulse electron imaging and selected-area diffraction are used to study structural dynamics with space- and time-resolutions that allow direct observation of transformations affecting the fundamental properties of materials. Only recently, the UEM studies have begun to reveal a variety of dynamic responses of nanoscale specimens to material excitation, on ultrafast time scales and up to microseconds. Here, we give an account of some of these results, including imaging and diffraction dynamics of gold and graphite single crystal films, revealing atomic motions and morphology change in the former and two forms of acoustic resonance in the latter. We also report, for the first time, dynamic changes upon lattice excitation of moire fringes in graphite, recorded in bright- and dark-field images. Oscillations that are seen in moire fringe spacing and other selected-area image properties have the same temporal period as observed in Bragg spot changes in diffraction patterns from the same specimen areas. This period is shown to vary linearly with the local thickness of the specimen, thus establishing that the oscillations are due to excitation of a resonant elastic modulation of the film thickness and allowing derivation of a value of the Young's modulus (c_(33)) of 36 GPa for the c-axis strain. The second form of resonance dynamics observed in graphite, on much longer time scales, corresponds to an out-of-plane drumming vibration of the film consistent with a 0.94 TPa elastic modulus for in-plane (a-axis) stretching. For the latter, the nanoscale membrane motion appears complicated ("chaotic") at early time and builds up to a resonance at longer times. Finally, electron energy loss spectroscopy (EELS) in the UEM provides a unique domain of study of chemical bonding on the time scale of change (femtoseconds), and its application to graphite is discussed.
机译:在四维(4D)超快电子显微镜(UEM)中,定时脉冲电子成像和选择区域衍射用于研究具有时空分辨率的结构动力学,从而可以直接观察影响材料基本性能的转变。直到最近,UEM研究才开始揭示纳米尺度样品对材料激发的各种动态响应,其响应速度超快,可长达数微秒。在这里,我们对其中一些结果进行了说明,包括金和石墨单晶膜的成像和衍射动力学,揭示了前者的原子运动和形态变化以及后者的两种形式的声共振。我们还首次报道了在明场和暗场图像中记录的石墨中的莫尔条纹在晶格激发后的动态变化。莫尔条纹间距和其他选定区域图像特性中观察到的振荡具有与在相同样本区域的衍射图样中的布拉格斑点变化中观察到的相同的时间周期。如图所示,该周期随样品的局部厚度线性变化,因此可以确定振荡是由于膜厚度的共振弹性调制的激发引起的,并可以推导杨氏模量(c_(33))的值。 c轴应变为36 GPa。在更长的时间尺度上,在石墨中观察到的共振动力学的第二种形式对应于薄膜的面外击鼓振动,该振动与平面内(a轴)拉伸的0.94 TPa弹性模量一致。对于后者,纳米级膜的运动在早期显得复杂(“混乱”),并在较长的时间积累到共振。最后,UEM中的电子能量损失谱(EELS)在变化的时间尺度(飞秒)上提供了化学键研究的独特领域,并讨论了其在石墨中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号