...
首页> 外文期刊>Proteins: Structure, Function, and Genetics >Determining the molecular mechanism of inactivation by chemical modification of triosephosphate isomerase from the human parasite Giardia lamblia: a study for antiparasitic drug design.
【24h】

Determining the molecular mechanism of inactivation by chemical modification of triosephosphate isomerase from the human parasite Giardia lamblia: a study for antiparasitic drug design.

机译:通过化学修饰人寄生虫贾第鞭毛虫的丙糖磷酸异构酶来确定灭活的分子机制:抗寄生虫药物设计研究。

获取原文
获取原文并翻译 | 示例

摘要

Giardiasis, the most prevalent intestinal parasitosis in humans, is caused by Giardia lamblia. Current drug therapies have adverse effects on the host, and resistant strains against these drugs have been reported, demonstrating an urgent need to design more specific antigiardiasic drugs. ATP production in G. lamblia depends mainly on glycolysis; therefore, all enzymes of this pathway have been proposed as potential drug targets. We previously demonstrated that the glycolytic enzyme triosephosphate isomerase from G. lamblia (GlTIM), could be completely inactivated by low micromolar concentrations of thiol-reactive compounds, whereas, in the same conditions, the activity of human TIM (HuTIM) was almost unaltered. We found that the chemical modification (derivatization) of at least one Cys, of the five Cys residues per monomer in GlTIM, causes this inactivation. In this study, structural and functional studies were performed to describe the molecular mechanism of GlTIM inactivation by thiol-reactive compounds. We found that the Cys222 derivatization is responsible for GlTIM inactivation; this information is relevant because HuTIM has a Cys residue in an equivalent position (Cys217). GlTIM inactivation is associated with a decrease in ligand affinity, which affects the entropic component of ligand binding. In summary, this work describes a mechanism of inactivation that has not been previously reported for TIMs from other parasites and furthermore, we show that the difference in reactivity between the Cys222 in GlTIM and the Cys217 in HuTIM, indicates that the surrounding environment of each Cys residue has unique structural differences that can be exploited to design specific antigiardiasic drugs.
机译:贾第鞭毛虫病是人类最普遍的肠道寄生虫病,是由兰氏贾第鞭毛虫引起的。当前的药物疗法对宿主有不利影响,并且已经报道了针对这些药物的耐药株,这表明迫切需要设计更具体的抗贾第鞭毛虫药物。兰姆酵母中的ATP产生主要取决于糖酵解。因此,已提议将该途径的所有酶作为潜在的药物靶标。我们以前证明了来自甘蓝菌的糖酵解酶磷酸三糖异构酶(GlTIM)可以通过低微摩尔浓度的硫醇反应性化合物完全失活,而在相同条件下,人TIM(HuTIM)的活性几乎不变。我们发现,GlTIM中每个单体五个Cys残基中至少一个Cys的化学修饰(衍生化)会导致这种失活。在这项研究中,进行了结构和功能研究,以描述硫醇反应性化合物使GlTIM失活的分子机制。我们发现Cys222衍生化导致GlTIM失活。此信息很重要,因为HuTIM在同一个位置(Cys217)具有Cys残基。 GlTIM失活与配体亲和力的降低有关,这会影响配体结合的熵成分。总而言之,这项工作描述了先前尚未报道过的其他寄生虫的TIM失活的机制,此外,我们表明GlTIM中的Cys222和HuTIM中的Cys217之间的反应性差异表明每个Cys的周围环境残留物具有独特的结构差异,可用于设计特定的抗心律失常药物。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号