...
首页> 外文期刊>Proteins: Structure, Function, and Genetics >Mechanisms for allosteric activation of protease DegS by ligand binding and oligomerization as revealed from molecular dynamics simulations
【24h】

Mechanisms for allosteric activation of protease DegS by ligand binding and oligomerization as revealed from molecular dynamics simulations

机译:分子动力学模拟揭示了配体结合和寡聚化变构活化蛋白酶DegS的机制。

获取原文
获取原文并翻译 | 示例

摘要

A local perturbation of a protein may lead to functional changes at some distal site, a phenomenon denoted as allostery. Here, we study the allosteric control of a protease using molecular dynamics simulations. The system considered is the bacterial protein DegS which includes a protease domain activated on ligand binding to an adjacent PDZ domain. Starting from crystallographic structures of DegS homo-trimers, we perform simulations of the ligand-free and -bound state of DegS at equilibrium. Considering a single protomer only, the trimeric state was mimicked by applying restraints on the residues in contact with other protomers in the DegS trimer. In addition, the bound state was also simulated without any restraints to mimic the monomer. Our results suggest that not only ligand release but also disassembly of a DegS trimer inhibits proteolytic activity. Considering various observables for structural changes, we infer allosteric pathways from the interface with other protomers to the active site. Moreover, we study how ligand release leads to (i) catalytically relevant changes involving residues 199-201 and (ii) a transition from a stretched to a bent conformation for residues 217-219 (which prohibits proper substrate binding). Finally, based on ligand-induced C shifts we identify residues in contact with other protomers in the DegS trimer that likely transduce the perturbation from ligand release from a given protomer to adjacent protomers. These residues likely play a key role in the experimentally known effect of ligand release from a protomer on the proteolytic activity of the other protomers. Proteins 2016; 84:1690-1705. (c) 2016 Wiley Periodicals, Inc.
机译:蛋白质的局部扰动可能导致某些远端部位的功能改变,这种现象称为变构。在这里,我们使用分子动力学模拟研究蛋白酶的变构控制。所考虑的系统是细菌蛋白DegS,其包括在与相邻PDZ结构域结合的配体上活化的蛋白酶结构域。从DegS均三聚体的晶体结构开始,我们对DegS在平衡时的无配体和结合态进行了模拟。仅考虑单个protomer,通过限制与DegS三聚体中其他protomer接触的残基来模拟三聚体状态。另外,还模拟了结合状态,没有任何限制来模仿单体。我们的结果表明,不仅配体释放,而且DegS三聚体的分解均抑制蛋白水解活性。考虑到各种可观察到的结构变化,我们推断出从与其他前体的界面到活性位点的变构途径。此外,我们研究了配体释放如何导致(i)涉及残基199-201的催化相关变化,以及(ii)残基217-219从拉伸构象到弯曲构象的转变(这阻止了适当的底物结合)。最后,基于配体诱导的C位移,我们确定了与DegS三聚体中其他protomer接触的残基,这些残基很可能将配体从给定protomer释放到邻近protomer的干扰转移了。这些残基可能在实验上已知的配体从原胚中释放对其他原胚的蛋白水解活性中起关键作用。蛋白质2016; 84:1690-1705。 (c)2016年威利期刊有限公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号