...
首页> 外文期刊>Proteins: Structure, Function, and Genetics >Sequence-structure-function analysis of the bifunctional enzyme MnmC that catalyses the last two steps in the biosynthesis of hypermodified nucleoside mnm5s2U in tRNA.
【24h】

Sequence-structure-function analysis of the bifunctional enzyme MnmC that catalyses the last two steps in the biosynthesis of hypermodified nucleoside mnm5s2U in tRNA.

机译:双功能酶MnmC的序列结构功能分析,可催化tRNA中超修饰核苷mnm5s2U生物合成的最后两个步骤。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

MnmC catalyses the last two steps in the biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) in tRNA. Previously, we reported that this bifunctional enzyme is encoded by the yfcK open reading frame in the Escherichia coli K12 genome. However, the mechanism of its activity, in particular the potential structural and functional dependence of the domains responsible for catalyzing the two modification reactions, remains unknown. With the aid of the protein fold-recognition method, we constructed a structural model of MnmC in complex with the ligands and target nucleosides and studied the role of individual amino acids and entire domains by site-directed and deletion mutagenesis, respectively. We found out that the N-terminal domain contains residues responsible for binding of the S-adenosylmethionine cofactor and catalyzing the methylation of nm(5)s(2)U to form mnm(5)s(2)U, while the C-terminal domain contains residues responsible for binding of the FAD cofactor. Further, point mutants with compromised activity of either domain can complement each other to restore a fully functional enzyme. Thus, in the conserved fusion protein MnmC, the individual domains retain independence as enzymes. Interestingly, the N-terminal domain is capable of independent folding, while the isolated C-terminal domain is incapable of folding on its own, a situation similar to the one reported recently for the rRNA modification enzyme RsmC.
机译:MnmC催化tRNA中5-甲基氨基甲基-2-硫尿苷(mnm(5)s(2)U)的生物合成中的最后两个步骤。以前,我们报道了这种双功能酶是由大肠杆菌K12基因组中的yfcK开放阅读框编码的。然而,其活性的机制,特别是负责催化两个修饰反应的结构域的潜在结构和功能依赖性仍然未知。借助蛋白质折叠识别方法,我们构建了与配体和目标核苷复合的MnmC结构模型,并分别通过定点诱变和缺失诱变研究了单个氨基酸和整个结构域的作用。我们发现N末端域包含负责S-腺苷甲硫氨酸辅因子结合并催化nm(5)s(2)U甲基化以形成mnm(5)s(2)U的残基,而C-末端结构域包含负责FAD辅因子结合的残基。此外,任一个域的活性受损的点突变体可以彼此互补以恢复全功能的酶。因此,在保守的融合蛋白MnmC中,各个结构域作为酶保留独立性。有趣的是,N末端结构域能够独立折叠,而分离的C末端结构域自身无法折叠,这种情况类似于最近报道的rRNA修饰酶RsmC的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号