...
首页> 外文期刊>Proteins: Structure, Function, and Genetics >A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
【24h】

A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.

机译:一项分子动力学研究比较了野生型和多种耐药HIV蛋白酶:皮瓣和天冬氨酸25个腔尺寸的差异。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

HIV proteases can develop resistance to therapeutic drugs by mutating specific residues, but still maintain activity with their natural substrates. To gain insight into why mutations confer such resistance, long ( approximately 70 ns) Molecular Dynamics simulations in explicit solvent were performed on a multiple drug resistant (MDR) mutant (with Asn25 in the crystal structure mutated in silico back to the catalytically active Asp25) and a wild type (WT) protease. HIV proteases are homodimers, with characteristic flap tips whose conformations and dynamics are known to be important influences of ligand binding to the aspartates that form the catalytic center. The WT protease undergoes a transition between 25 and 35 ns that is absent in the MDR protease. The origin of this distinction is investigated using principal component analysis, and is related to differences in motion mainly in the flap region of each monomer. Trajectory analysis suggests that the WT transition arises from a concerted motion of the flap tip distances to their catalytic aspartate residues, and the distance between the two flap tips. These distances form a triangle that in the WT expands the active site from an initial (semi-open) form to an open form, in a correlated manner. In contrast, the MDR protease remains in a more closed configuration, with uncorrelated fluctuations in the distances defining the triangle. This contrasting behavior suggests that the MDR mutant achieves its resistance to drugs by making its active site less accessible to inhibitors. The migration of water to the active site aspartates is monitored. Water molecules move in and out of the active site and individual waters hydrogen bond to both aspartate carboxylate oxygens, with residence times in the ns time regime.
机译:HIV蛋白酶可以通过突变特定残基来发展对治疗药物的耐药性,但仍保持其天然底物的活性。为了深入了解突变为何会赋予这种抗性,在多药抗性(MDR)突变体上进行了长时间(约70 ns)的分子动力学模拟(在显性溶剂中)(在晶体结构中,Asn25在计算机中突变为催化活性的Asp25)。和野生型(WT)蛋白酶。 HIV蛋白酶是同源二聚体,具有特征性的瓣尖,其构象和动力学已知是配体与形成催化中心的天冬氨酸结合的重要影响。 WT蛋白酶经历了25到35 ns的过渡,这是MDR蛋白酶所没有的。使用主成分分析来研究这种区别的起源,并且该区别的起源主要与每种单体的襟翼区域的运动差异有关。轨迹分析表明,WT转变是由皮瓣尖端距离与其催化天冬氨酸残基的协同运动以及两个皮瓣尖端之间的距离共同产生的。这些距离形成一个三角形,该三角形在WT中以相关方式将活动位点从初始(半开放)形式扩展为开放形式。相反,MDR蛋白酶保持更封闭的构型,在定义三角形的距离上存在不相关的波动。这种相反的行为表明,MDR突变体通过使其活性位点不易被抑制剂接近,从而实现了对药物的耐药性。监测水向活性部位天冬氨酸的迁移。水分子移入和移出活性位点,各个水分子的氢键与天冬氨酸羧酸盐中的氧键合,其停留时间为ns时间范围。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号