首页> 外文期刊>Proteins: Structure, Function, and Genetics >Nonequilibrium, multiple-timescale simulations of ligand-receptor interactions in structured protein systems.
【24h】

Nonequilibrium, multiple-timescale simulations of ligand-receptor interactions in structured protein systems.

机译:结构蛋白质系统中配体-受体相互作用的非平衡,多时间尺度模拟。

获取原文
获取原文并翻译 | 示例
           

摘要

Predicting the long-time, nonequilibrium dynamics of receptor-ligand interactions for structured proteins in a host fluid is a formidable task, but of great importance to predicting and analyzing cell-signaling processes and small molecule drug efficacies. Such processes take place on timescales on the order of milliseconds to seconds, so "brute-force" real-time, molecular or atomic simulations to determine absolute ligand-binding rates to receptor targets and over a statistical ensemble of systems are not currently feasible. In the current study, we implement on real protein systems a previously developed 3-5 hybrid molecular dynamics/Brownian dynamics algorithm, which takes advantage of the underlying, disparate timescales involved and overcomes the limitations of brute-force approaches. The algorithm is based on a multiple timescale analysis of the total system Hamiltonian, including all atomic and molecular structure information for the system: water, ligand, and receptor. In general, the method can account for the complex hydrodynamic, translational-orientational diffusion aspects of ligand-docking dynamics as well as predict the actual or absolute rates of ligand binding. To test some of the underlying features of the method, simulations were conducted here for an artificially constructed spherical protein "made" from the real protein insulin. Excellent comparisons of simulation calculations of the so-called grand particle friction tensor to analytical values were obtained for this system when protein charge effects were neglected. When protein charges were included, we found anomalous results caused by the alteration of the spatial, microscopic structure of water proximal to the protein surface. Protein charge effects were found to be highly significant and consistent with the recent hypothesis of Hoppert and Mayer (Am Sci 1999;87:518-525) for charged macromolecules in water, which involves the formation of a "water dense region" proximal to the charged protein surface followed by a "dilute water region." We further studied the algorithm on a D-peptide/HIV capside protein system and demonstrated the algorithms utility to study the nonequilibrium docking dynamics in this contemporary problem. In general, protein charge effects, which alter water structural properties in an anomalous fashion proximal to the protein surface, were found to be much more important than the so-called hydrodynamic interaction effects between ligand and receptor. The diminished role of hydrodynamic interactions in protein systems allows for a much simpler overall dynamic algorithm for the nonequilibrium protein-docking process. Further studies are now underway to critically examine this simpler overall algorithm in analyzing the nonequilibrium protein-docking problem.
机译:预测宿主液中结构化蛋白的受体-配体相互作用的长期,非平衡动力学是一项艰巨的任务,但对预测和分析细胞信号传导过程以及小分子药物疗效至关重要。这样的过程发生在毫秒级到秒级的时间尺度上,因此当前无法通过“强力”实时,分子或原子模拟来确定与受体靶标的绝对配体结合率以及整个系统的统计数据。在当前的研究中,我们在真实的蛋白质系统上实施了以前开发的3-5个混合分子动力学/布朗动力学算法,该算法利用了所涉及的潜在,分散的时间尺度,并克服了蛮力方法的局限性。该算法基于对整个系统哈密顿量的多时标分析,包括该系统的所有原子和分子结构信息:水,配体和受体。通常,该方法可解释配体对接动力学的复杂流体动力学,平移-定向扩散方面,以及预测配体结合的实际或绝对速率。为了测试该方法的某些基本功能,此处对由真实蛋白质胰岛素“制成”的人工构建的球形蛋白质进行了仿真。当蛋白质电荷效应被忽略时,该系统获得了所谓的大颗粒摩擦张量的模拟计算与分析值的极佳比较。当包含蛋白质电荷时,我们发现异常结果是由蛋白质表面附近的水的空间,微观结构的变化引起的。发现蛋白质电荷效应非常显着,并且与Hoppert和Mayer(Am Sci 1999; 87:518-525)最近关于水中带电大分子的假设相一致,这涉及在水分子附近形成“水密区”。带电的蛋白质表面,后面是“稀水区域”。我们进一步研究了在D肽/ HIV衣壳蛋白系统上的算法,并证明了该算法可用于研究这一当代问题中的非平衡对接动力学。通常,发现以接近蛋白质表面的异常方式改变水结构性质的蛋白质电荷效应比配体和受体之间的所谓流体动力学相互作用效应更为重要。蛋白质系统中流体动力学相互作用的作用减弱,从而为非平衡蛋白对接过程提供了更为简单的整体动力学算法。现在正在进行进一步的研究,以严格地检查这种更简单的整体算法来分析非平衡蛋白对接问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号