首页> 外文学位 >Integrated simulation tools for fluid-structure interactions in bio-nano systems.
【24h】

Integrated simulation tools for fluid-structure interactions in bio-nano systems.

机译:用于生物纳米系统中流体-结构相互作用的集成仿真工具。

获取原文
获取原文并翻译 | 示例

摘要

The characterization and modeling of complex biological and nanoscale systems has reached a stage that various levels of details can be resolved. The immersed electrokinetic finite element method (IEFEM), which couples fluid-structure interaction problem with multiphysics features such as cell-cell interaction and electrokinetics, is proposed for solving a class of bio-nano-fluidics problems. In this method, independent solid meshes move in a fixed background field mesh that models the fluid and electric field. This simple strategy removes the need for expensive mesh-updates. Furthermore, the reproducing kernel particle functions enable efficient coupling of various immersed deformable solids with the surrounding viscous fluid in the presence of an applied electric field. We have applied this method to model the human cardiovascular system, especially to determine how cellular scale interactions influence the macroscopic property of the blood. Many of the complex rheological and mechanical properties observed in experiments, such as rouleau formation of deformable blood cells and shear-rate dependent viscoelasticity of blood have been effectively and efficiently modeled. In particular, the IEFEM is being used for modeling the electrokinetic-induced mechanical motion of particles in a fluid domain under an applied electric field. The electric force on a particle is calculated by the Maxwell stress tensor method. For the first time, three-dimensional assembly of particles of various geometries and electrical properties have been comprehensively studied using the new method. Simulation of the dynamic process of electro-manipulation of individual and multiple cells agrees well with experimental data. As a specific application, 3D dielectrophoretic assembly of nanowires across micro-electrodes has been studied. The various dynamic processes and assembled patterns are explored by comparing our simulation results with experimental observations. The simulations are being used to determine operating parameters for optimal deposition yield of nanoelectronic devices. The HEMS sensors will be used for the measurement of cell traction forces for the understanding of the focal adhesion and cell motility.
机译:复杂的生物和纳米级系统的表征和建模已达到可以解决各种细节级别的阶段。为了解决一类生物-纳米流体问题,提出了一种将流体-结构相互作用问题与诸如细胞-细胞相互作用和电动动力学等多物理场特征相结合的浸没式电动有限元方法(IEFEM)。在这种方法中,独立的实体网格在固定的背景场网格中移动,该网格对流体和电场进行建模。这种简单的策略消除了对昂贵的网格更新的需求。此外,在存在施加电场的情况下,可再生的内核粒子功能使各种浸没的可变形固体与周围的粘性流体有效耦合。我们已经将该方法应用于人类心血管系统的建模,尤其是确定细胞尺度相互作用如何影响血液的宏观特性。在实验中观察到的许多复杂的流变学和力学性能,例如可变形血细胞的回旋形成和依赖剪切速率的血液粘弹性已得到有效建模。特别地,IEFEM被用于在施加电场的情况下对流体域中的粒子的电动感应的机械运动进行建模。通过麦克斯韦应力张量法计算粒子上的电力。首次使用这种新方法全面研究了各种几何形状和电学性质的粒子的三维组装。对单个和多个细胞进行电操纵的动态过程的仿真与实验数据非常吻合。作为特定的应用,已经研究了跨微电极的纳米线的3D介电泳组装。通过将我们的模拟结果与实验观察结果进行比较,探索了各种动态过程和组合模式。该模拟被用于确定用于纳米电子器件的最佳沉积产率的操作参数。 HEMS传感器将用于测量细胞牵引力,以了解粘着斑和细胞运动性。

著录项

  • 作者

    Liu, Yaling.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Mechanical.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号