首页> 外文期刊>Progress in photovoltaics >Improved conductive atomic force microscopy measurements on organic photovoltaic materials via mitigation of contact area uncertainty
【24h】

Improved conductive atomic force microscopy measurements on organic photovoltaic materials via mitigation of contact area uncertainty

机译:通过减轻接触面积的不确定性,改进了有机光伏材料上的导电原子力显微镜测量

获取原文
获取原文并翻译 | 示例
           

摘要

Physical processes that lead to conversion of light into electrical energy inside photovoltaic devices happen at the nanoscale. Therefore, understanding of electrical properties of photovoltaic materials at this length scale is of paramount importance for improvement of device performance. In this paper, we describe and validate a new framework for high-resolution quantitative measurements of electrical and mechanical properties of compliant materials with sub-100-nm resolution. Previous approaches have generally suffered from uncertainty in the quantitative level of contact between the probe and the material being measured;;the methodology presented here overcomes this obstacle. We use the broadly studied ITO/PEDOT:PSS/ P3HT:PC_(61)BM system as an example to illustrate variability of chemical composition and electrical properties of the active layer at hundred-nanometers and micrometer length scales.
机译:导致光在光伏器件内部转换为电能的物理过程发生在纳米级。因此,在这种长度尺度上理解光伏材料的电性能对于改善器件性能至关重要。在本文中,我们描述并验证了一种新的框架,该框架可用于对分辨率低于100 nm的顺应性材料进行电气和机械性能的高分辨率定量测量。先前的方法通常在探针和被测材料之间的定量接触水平上存在不确定性;这里提出的方法克服了这一障碍。我们以广泛研究的ITO / PEDOT:PSS / P3HT:PC_(61)BM系统为例,来说明活性层的化学成分和电学性质在百纳米和微米长度尺度上的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号