首页> 外文期刊>Progress in Particle and Nuclear Physics >High-energy neutrino astrophysics: Status and perspectives
【24h】

High-energy neutrino astrophysics: Status and perspectives

机译:高能中微子天体物理学:现状与展望

获取原文
           

摘要

Neutrinos are unique cosmic messengers. Present attempts are directed to extend the window of cosmic neutrino observation from low energies (Sun, supernovae) to much higher energies. The aim is to study the most violent processes in the Universe which accelerate charged particles to highest energies, far beyond the reach of laboratory experiments on Earth. These processes must be accompanied by the emission of neutrinos. Neutrinos are electrically neutral and interact only weakly with ordinary matter; they thus propagate through the Universe without absorption or deflection, pointing back to their origin. Their feeble interaction, however, makes them extremely difficult to detect. The years 2008-2010 have witnessed remarkable steps in developing high energy neutrino telescopes. In 2010, the cubic-kilometre neutrino telescope IceCube at the South Pole has been completed. In the Mediterranean Sea the first-generation neutrino telescope ANTARES takes data since 2008, and efforts are directed towards KM3NeT, a telescope on the scale of several cubic kilometres. The next years will be key years for opening the neutrino window to the high energy Universe. With an instrumented volume of a cubic kilometre, IceCube is entering a region with realistic discovery potential. Discoveries or non-discoveries of IceCube will have a strong impact on the future of the field and possibly mark a "moment of truth". In this review, we discuss the scientific case for neutrino telescopes, describe the detection principle and its implementation in first- and second-generation installations and finally collect the existing physics results and the expectations for future detectors. We conclude with an outlook to alternative detection methods, in particular for neutrinos of extremely high energies.
机译:中微子是独特的宇宙信使。当前的尝试旨在将宇宙中微子的观察范围从低能量(太阳,超新星)扩展到高得多的能量。目的是研究宇宙中最猛烈的过程,这些过程会将带电粒子加速到最高能量,这远远超出了地球上实验室的研究范围。这些过程必须伴随着中微子的发射。中微子是电中性的,与普通物质的相互作用很小。它们因此通过宇宙传播而没有吸收或偏转,指向其起源。但是,它们微弱的交互作用使它们极难被发现。 2008-2010年见证了开发高能中微子望远镜的显着步骤。 2010年,南极的立方千米中微子望远镜IceCube完工。在地中海中,第一代中微子望远镜ANTARES自2008年以来就开始收集数据,并致力于KM3NeT,这是一种具有数立方公里规模的望远镜。未来几年将是为高能宇宙打开中微子窗口的关键年。 IceCube的仪器体积为立方公里,正在进入一个具有现实发现潜力的地区。 IceCube的发现或未发现将对该领域的未来产生重大影响,并可能标志着“关键时刻”。在这篇综述中,我们讨论了中微子望远镜的科学案例,描述了第一代和第二代装置的探测原理及其实现,最后收集了现有的物理学结果以及对未来探测器的期望。最后,我们将展望替代检测方法,特别是对于极高能量的中微子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号