...
首页> 外文期刊>Biomechanics and modeling in mechanobiology >Micromechanics of diffuse axonal injury: Influence of axonal orientation and anisotropy
【24h】

Micromechanics of diffuse axonal injury: Influence of axonal orientation and anisotropy

机译:弥漫性轴索损伤的微力学:轴突方向和各向异性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Multiple length scales are involved in the development of traumatic brain injury, where the global mechanics of the head level are responsible for local physiological impairment of brain cells. In this study, a relation between the mechanical state at the tissue level and the cellular level is established. A model has been developed that is based on pathological observations of local axonal injury. The model contains axons surrounding an obstacle (e.g., a blood vessel or a brain soma). The axons, which are described by an anisotropic fiber-reinforced material model, have several physically different orientations. The results of the simulations reveal axonal strains being higher than the applied maximum principal tissue strain. For anisotropic brain tissue with a relatively stiff inclusion, the relative logarithmic strain increase is above 60%. Furthermore, it is concluded that individual axons oriented away from the main axonal direction at a specific site can be subjected to even higher axonal strains in a stress-driven process, e.g., invoked by inertial forces in the brain. These axons can have a logarithmic strain of about 2.5 times the maximum logarithmic strain of the axons in the main axonal direction over the complete range of loading directions. The results indicate that cellular level heterogeneities have an important influence on the axonal strain, leading to an orientation and location-dependent sensitivity of the tissue to mechanical loads. Therefore, these effects should be accounted for in injury assessments relying on finite element head models.
机译:多种长度量表涉及颅脑外伤的发展,其中头部水平的整体力学负责脑细胞的局部生理损伤。在这项研究中,建立了组织水平的机械状态与细胞水平之间的关系。已经开发了基于局部轴突损伤的病理观察的模型。该模型包含围绕障碍物(例如,血管或脑体)的轴突。由各向异性纤维增强材料模型描述的轴突具有几个物理上不同的方向。模拟结果显示轴突应变高于所施加的最大主要组织应变。对于夹杂物相对较硬的各向异性脑组织,相对对数应变的增加超过60%。此外,得出的结论是,在特定位置处偏离主要轴突方向定向的各个轴突可以在应力驱动的过程中受到更高的轴突应变,例如由大脑中的惯性力所引起。这些轴突在整个加载方向范围内的对轴应变可以是主轴突方向上轴突最大对数应变的约2.5倍。结果表明,细胞水平的异质性对轴突应变具有重要影响,导致组织对机械负荷的方向和位置依赖性敏感性。因此,在依赖有限元头部模型的伤害评估中应考虑这些影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号