...
首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part J. Journal of engineering tribology >An evaluation of the explicit finite-element method approach for modelling dense flows of discrete grains in a Couette shear cell
【24h】

An evaluation of the explicit finite-element method approach for modelling dense flows of discrete grains in a Couette shear cell

机译:评估Couette剪切单元中离散晶粒密集流动的显式有限元方法的评估

获取原文
获取原文并翻译 | 示例
           

摘要

Granular flows are complex materials that are composed of discrete solid particles that can display gaseous, liquid, and/or solid behaviour under various conditions. Consequently, tribologists have studied them for their ability to carry loads and/or accommodate sliding surface velocities. Because of the highly non-linear behaviour of granular materials, their behaviour is difficult to predict. One new modelling approach that holds promise in simulating the behaviour of these particulate materials is the explicit finite-element method (FEM). The explicit FEM is a computational modelling approach capable of capturing dynamic, transient events, such as collisions and particle-particle interactions of grains in granular flows. This paper presents an explicit FEM simulation of a dense flow of steel particles in a rough gravity-free Couette shear cell with no externally applied load. Parametric tests of this cell are also carried out by varying the height of the shear cell and the types of known granular materials sheared in the cell. Subsequently, a final evaluation of the explicit FEM approach is conducted by simulating a dense flow of sheared titanium oxide (TiO{sub}2) powder in the shear cell and comparing it to a similar simulation done using the discrete-element method (DEM) approach. In this comparison, the velocity of the flow in the DEM cell is larger, whereas the FEM and DEM solid fraction distributions are almost identical in the core regions of the shear cells. The merits of the FEM and DEM approaches are presented in light of the results shown in this work.
机译:颗粒流是由离散的固体颗粒组成的复杂材料,这些固体颗粒在各种条件下都可以显示出气态,液态和/或固态行为。因此,摩擦学家研究了它们的承载能力和/或适应滑动表面速度的能力。由于粒状材料的高度非线性行为,因此很难预测它们的行为。在模拟这些颗粒材料的行为方面有希望的一种新的建模方法是显式有限元方法(FEM)。显式有限元法是一种计算建模方法,能够捕获动态瞬态事件,例如颗粒流中晶粒的碰撞和粒子与粒子之间的相互作用。本文给出了在无外部重力作用的粗糙无重力库埃特剪切单元中钢颗粒密集流动的显式有限元模拟。通过更改剪切单元的高度和单元中剪切的已知颗粒材料的类型,也可以对该单元进行参数测试。随后,通过模拟剪切单元中剪切氧化钛(TiO {sub} 2)粉末的致密流动并将其与使用离散元素方法(DEM)进行的类似模拟进行比较,对显式FEM方法进行了最终评估。方法。在此比较中,DEM单元中的流速较大,而FEM和DEM固体分数分布在剪切单元的核心区域几乎相同。根据这项工作中显示的结果,介绍了FEM和DEM方法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号