首页> 外文期刊>Precision Agriculture >Using canopy reflectance and partial least squares regression to calculate within-field statistical variation in crop growth and nitrogen status of rice.
【24h】

Using canopy reflectance and partial least squares regression to calculate within-field statistical variation in crop growth and nitrogen status of rice.

机译:使用冠层反射率和偏最小二乘回归来计算作物生长和水稻氮素状况的田间统计差异。

获取原文
获取原文并翻译 | 示例
           

摘要

For the site-specific prescription of fertilizer topdressing in rice cultivation, a non-destructive diagnosis of the rice growth and nutrition status is necessary. Three experiments were done to develop and test a model using canopy reflectance for the non-destructive diagnosis of plant growth and N status in rice. Two experiments for model development were conducted, one in 2000 and another in 2003 in Suwon, Korea, including two rice varieties and four nitrogen (N) rates in 2000 and four rice varieties and 10 N treatments in 2003. Hyperspectral canopy reflectance (300-1,100 nm) data recorded at various growth stages before heading were used to develop a partial least squares regression (PLS) model to calculate plant biomass and N nutrition status. The 342 observations were split for model calibration (75%) and validation (25%). The PLS model was then tested to calculate within-field statistical variation of four crop variables: shoot dry weight (SDW), shoot N concentration (SN), shoot N density (SND) and N nutrition index (NNI) using measured canopy reflectance data from a field of 6,500 m2 in 2004. Results showed that PLS regression using logarithm reflectance had better performance than both the PLS and multiple stepwise linear regression (MSLR) models using original reflectance data to calculate the four plant variables in year 2000 and 2003. It produced values with an acceptable model coefficient of determination (R2) and relative error of calculation (REC). The model R2 and REC ranged from .83 to .89 and 13.4% to 22.8% for calibration, and .76 to .87 and 14.0% to 24.4% for validation, respectively. The PLS regression model R2 was reduced in the test data of year 2004 but the root mean square error of calculation (RMSEC) was smaller, suggesting that the PLS regression model using canopy reflectance data could be a promising method to calculate within-field spatial variation of rice crop growth and N status..
机译:对于水稻种植中特定位置的追肥配方,必须对水稻的生长和营养状况进行无损诊断。进行了三个实验,以开发和测试使用冠层反射率的模型来对水稻的植物生长和氮素状况进行无损诊断。在韩国水原市进行了两次模型开发实验,一次是2000年,另一次是2003年,其中包括2000年的两个水稻品种和四个氮(N)比率,以及2003年的四个水稻品种和10个N处理。高光谱冠层反射率(300-抽穗前在各个生长阶段记录的1,100 nm)数据用于建立偏最小二乘回归(PLS)模型以计算植物生物量和N营养状况。将342个观测值拆分为模型校准(75%)和验证(25%)。然后测试PLS模型,以使用测得的冠层反射率数据计算四种作物变量的田间统计变化:枝干重(SDW),枝氮浓度(SN),枝氮浓度(SND)和氮营养指数(NNI)数据来自2004年的6,500平方米。结果显示,使用对数反射率进行PLS回归要比使用原始反射率数据来计算2000年和2003年的四个植物变量的PLS和多重逐步线性回归(MSLR)模型都更好。产生的值具有可接受的模型确定系数(R2)和相对计算误差(REC)。模型R2和REC的校准范围分别为0.83至0.89和13.4%至22.8%,而验证范围为0.76至0.87和14.0%至24.4%。在2004年的测试数据中,PLS回归模型R2有所减少,但计算的均方根误差(RMSEC)较小,这表明使用冠层反射率数据的PLS回归模型可能是一种计算田间空间变化的有前途的方法作物生长和氮素状况

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号