...
首页> 外文期刊>Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems >Further integration of the type-A-choking-oriented unified model for fast fluidization dynamics
【24h】

Further integration of the type-A-choking-oriented unified model for fast fluidization dynamics

机译:进一步集成了面向A型窒息的统一模型,以实现快速流化动力学

获取原文
获取原文并翻译 | 示例
           

摘要

As a supplementary paper, this article answers some questions that remain unsolved in our previous work "A type-A-choking-oriented unified model for fast fluidization dynamics", namely how to predict the axial solids holdup distribution and the minimum solid flux for fast fluidization. Starting from the physico-mathematical model of "cluster rebound at the dense bottom" proposed by the authors, the critical value of solid flux G(s)(rb) distinguishing two different types of axial solids holdup distributions was determined. Then, the height of built-up section having nearly constant solids holdup in the bottom region was correlated with the experimental data in the literature using the concept of elutriation for the extra solid flux G(s)-G(s)(rb). The models for the transition zone between the built-up dense bottom and the fully developed upper dilute region, and for the acceleration zone prior to the built-up dense bottom of a classical fast bed, were established in accordance with the principle of momentum flux balance. The integrated model predicted successfully the axial solids holdup distributions of Issangya's experiments under extremely wide operating conditions, covering dilute phase transport, the premature fast bed, the classical fast bed, and the high-density fast bed. The prediction method of the minimum solid flux for fast fluidization G(sm) was semi-analytically deduced, indicating that G(sm) can be estimated using the revised Yang's formula at the superficial gas velocity of 3u(t). Finally, some important assumptions and consequences of the unified model are discussed. (C) 2015 Elsevier B.V. All rights reserved.
机译:作为补充论文,本文回答了我们先前的工作“面向A型阻塞的快速流化动力学统一模型”中仍未解决的一些问题,即如何预测轴向固体滞留量分布和快速快速流动所需的最小固体通量。流化。从作者提出的“密实底部团簇反弹”的物理数学模型出发,确定了区分两种轴向固体滞留量分布的固体通量G(s)(rb)的临界值。然后,通过淘析多余固体通量G(s)-G(s)(rb)的概念,将底部区域具有几乎恒定固含量的堆积段的高度与文献中的实验数据相关联。根据动量通量原理,建立了密集密实底部和充分发育的上部稀薄区域之间过渡区域的模型,以及经典快速床密实底部之前的加速区域的模型。平衡。集成模型成功预测了Issangya实验在极宽的工作条件下的轴向固体持留量分布,包括稀相传输,过早的快速床,经典的快速床和高密度的快速床。半解析推导了快速流化最小固体通量的预测方法G(sm),表明可以使用修正的Yang's公式在3u(t)的表观气速下估算G(sm)。最后,讨论了统一模型的一些重要假设和后果。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号