首页> 外文期刊>Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems >On improving solid friction factor modeling for fluidized dense-phase pneumatic conveying systems
【24h】

On improving solid friction factor modeling for fluidized dense-phase pneumatic conveying systems

机译:关于改进流化密相气力输送系统的固体摩擦系数建模

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents results from an ongoing investigation into the modeling of solid friction factor for fluidized dense-phase pneumatic transport of powders. In spite of having the potential of being an energy economic and a better maintenance free mode of pneumatic transport, reliable design of fluidized dense-phase pneumatic conveying systems is still a difficult task due to the highly turbulent and complex nature of the flow of fine powders under high concentrations, where is it difficult to model particle-wall-air interactions. Several popular/applicable models (developed by other researchers, including one of the co-author of this paper) were evaluated to predict the total pipeline pressure loss for the dense-phase pneumatic conveying of fly ash (median particle diameter: 30 pm; particle density: 2300 kg/m~3; loose-poured bulk density: 700 kg/m~2) and ESP dust (median particle diameter: 7 μm; particle density: 3637 kg/m~3, loose-poured bulk density: 610 kg/m~3) under different diameter and length scale-up conditions (viz. 69 mm I.D. x 168 m; 105 mm I.D. x 168 m and 69 mm I.D. x 554 m pipes). These models are based on solids loading ratio and Froude number). A comparison between the predicted pneumatic conveying characteristics (PCC) and the experimental results showed that the models resulted in significant inaccuracy, especially under scale-up conditions of a new modeling technique has been developed using air velocity and a volumetric loading ratio term by replacing solid loading ratio and Froude number. The volumetric loading ratio term intends to address the product volume occupancy inside the pipeline, which is believed to be a better representation of flow conditions compared to mass ratio. The derived models were examined for scale-up accuracy by predicting pressure drop for different diameter/lengths of pipelines. It is found that the models have generally provided improved predictions in the dense-phase region. Whereas the existing models predicted with relative errors varying between 10 and 127% (depending on product and pipeline conditions), the new developed model resulted in predictions within 24% accuracy for a wide range of scale-up conditions, which provides better reliability and a narrower range of predictions, more suitable for industrial scale up requirements. Future work would require a more fundamental approach to understand the solid friction phenomenon for further accurate modeling.
机译:本文介绍了正在进行的粉末流化密相气动输送的固体摩擦因数建模研究的结果。尽管可能具有能源经济性和更好的免维护气动运输方式的潜力,但由于细粉流的高度紊乱和复杂性,流化密相气动输送系统的可靠设计仍然是一项艰巨的任务。在高浓度下,很难模拟颗粒-壁-空气相互作用。评价了几种流行的/适用的模型(由其他研究人员开发,包括本文的其中之一),以预测粉煤灰的密相气力输送的总管道压力损失(中值粒径:30 pm;颗粒)密度:2300 kg / m〜3;松散堆积密度:700 kg / m〜2)和ESP粉尘(中值粒径:7μm;颗粒密度:3637 kg / m〜3,松散堆积密度:610 kg / m〜3)在不同的直径和长度放大条件下(即69 mm ID x 168 m; 105 mm ID x 168 m和69 mm ID x 554 m管道)。这些模型基于固体填充率和弗洛德数。将预测的气力输送特性(PCC)与实验结果进行比较,结果表明模型导致了严重的误差,尤其是在按比例放大条件下,使用空气速度和体积负荷率项通过替代固体开发了一种新的建模技术负载率和弗洛德数。体积负载比术语旨在解决管道内部的产品体积占用,与质量比相比,这被认为是更好的流动条件表示。通过预测不同直径/长度的管道的压降,检查了衍生模型的放大精度。发现模型通常提供了在密相区域的改进的预测。现有模型预测的相对误差在10%至127%之间(取决于产品和管道条件),而新开发的模型则可以在各种放大条件下实现24%的准确度预测,从而提供了更好的可靠性和可靠性。较窄的预测范围,更适合于工业规模放大要求。未来的工作将需要更基本的方法来理解固体摩擦现象,以进行进一步的精确建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号