首页> 外文期刊>Biomechanics and modeling in mechanobiology >A potential role for differential contractility in early brain development and evolution
【24h】

A potential role for differential contractility in early brain development and evolution

机译:差异收缩性在早期大脑发育和进化中的潜在作用

获取原文
获取原文并翻译 | 示例
       

摘要

Differences in brain structure between species have long fascinated evolutionary biologists. Understanding how these differences arise requires knowing how they are generated in the embryo. Growing evidence in the field of evolutionary developmental biology (evo-devo) suggests that morphological differences between species result largely from changes in the spatiotemporal regulation of gene expression during development. Corresponding changes in functional cellular behaviors (morphogenetic mechanisms) are only beginning to be explored, however. Here we show that spatiotemporal patterns of tissue contractility are sufficient to explain differences in morphology of the early embryonic brain between disparate species. We found that enhancing cytoskeletal contraction in the embryonic chick brain with calyculin A alters the distribution of contractile proteins on the apical side of the neuroepithelium and changes relatively round cross-sections of the tubular brain into shapes resembling triangles, diamonds, and narrow slits. These perturbed shapes, as well as overall brain morphology, are remarkably similar to those of corresponding sections normally found in species such as zebrafish and Xenopus laevis (frog). Tissue staining revealed relatively strong concentration of F-actin at vertices of hyper-contracted cross-sections, and a finite element model shows that local contraction in these regions can convert circular sections into the observed shapes. Another model suggests that these variations in contractility depend on the initial geometry of the brain tube, as localized contraction may be needed to open the initially closed lumen in normal zebrafish and Xenopus brains, whereas this contractile machinery is not necessary in chick brains, which are already open when first created. We conclude that interspecies differences in cytoskeletal contraction may play a larger role in generating differences in morphology, and at much earlier developmental stages, in the brain than previously appreciated. This study is a step toward uncovering the underlying morphomechanical mechanisms that regulate how neural phenotypic differences arise between species.
机译:物种之间大脑结构的差异长期吸引着进化生物学家。要了解这些差异是如何产生的,就需要知道它们是如何在胚胎中产生的。进化发育生物学(evo-devo)领域中越来越多的证据表明,物种之间的形态差异主要是由于发育过程中基因表达的时空调节变化所致。但是,才开始探索功能性细胞行为(形态发生机制)的相应变化。在这里,我们显示组织收缩的时空模式足以解释不同物种之间早期胚胎大脑形态的差异。我们发现,用calyculin A增强胚胎鸡脑中的细胞骨架收缩,可改变神经上皮顶侧收缩蛋白的分布,并使管状脑的相对圆形横截面变为类似于三角形,菱形和狭缝的形状。这些扰动的形状以及整个大脑的形态与通常在诸如斑马鱼和非洲爪蟾(青蛙)的物种中发现的相应部分的形态非常相似。组织染色显示在超收缩截面的顶点处F-肌动蛋白的浓度相对较高,并且有限元模型显示这些区域中的局部收缩可以将圆形截面转换为观察到的形状。另一个模型表明,收缩力的这些变化取决于脑管的初始几何形状,因为可能需要局部收缩来打开正常斑马鱼和非洲爪蟾大脑中最初闭合的管腔,而在鸡脑中这种收缩机制不是必需的。首次创建时已打开。我们得出的结论是,细胞骨架收缩的种间差异可能比以前的理解在大脑形态形成以及早期发育阶段发挥更大作用。这项研究是朝揭示调控物种间神经表型差异产生方式的潜在形态力学机制迈出的一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号