首页> 美国卫生研究院文献>other >A Potential Role for Differential Contractility in Early Brain Development and Evolution
【2h】

A Potential Role for Differential Contractility in Early Brain Development and Evolution

机译:在早期大脑发育和演化的差异收缩的潜在作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Differences in brain structure between species have long fascinated evolutionary biologists. Understanding how these differences arise requires knowing how they are generated in the embryo. Growing evidence in the field of evolutionary developmental biology (evo-devo) suggests that morphological differences between species result largely from changes in the spatiotemporal regulation of gene expression during development. Corresponding changes in functional cellular behaviors (morphogenetic mechanisms) are only beginning to be explored, however. Here we show that spatiotemporal patterns of tissue contractility are sufficient to explain differences in morphology of the early embryonic brain between disparate species. We found that enhancing cytoskeletal contraction in the embryonic chick brain with calyculin A alters the distribution of contractile proteins on the apical side of the neuroepithelium and changes relatively round cross sections of the tubular brain into shapes resembling triangles, diamonds, and narrow slits. These perturbed shapes, as well as overall brain morphology, are remarkably similar to those of corresponding sections normally found in species such as zebrafish and frog. Tissue staining revealed relatively strong concentration of F-actin at vertices of hyper-contracted cross sections, and a finite element model shows that local contraction in these regions can convert circular sections into the observed shapes. Another model suggests that these variations in contractility depend on the initial geometry of the brain tube, as localized contraction may be needed to open the initially closed lumen in normal zebrafish and Xenopus (frog) brains, whereas this contractile machinery is not necessary in chick brains, which are already open when first created. We conclude that interspecies differences in cytoskeletal contraction may play a larger role in generating differences in morphology, and at much earlier developmental stages, in the brain than previously appreciated. This study is a step toward uncovering the underlying morphomechanical mechanisms that regulate how neural phenotypic differences arise between species.
机译:物种之间脑结构的差异具有长长着迷的进化生物学家。了解如何出现这些差异需要了解它们在胚胎中产生的方式。进化发展生物学领域的越来越多的证据表明物种之间的形态学差异主要来自发育过程中基因表达的时空调节的变化。然而,函数蜂窝行为(形态发生机制)的相应变化仅在探索中。在这里,我们显示出足以解释不同物种之间早期胚胎脑的形态学的差异。我们发现,用钙霉素A增强胚胎雏脑脑中的细胞骨骼收缩,改变了神经脑卒中的顶端侧的收缩蛋白的分布,并将管状脑的相对圆形横截面变为类似于三角形,钻石和窄狭缝的形状。这些扰动的形状以及整体脑形态的形状非常类似于通常在斑马鱼和青蛙等物种中发现的相应部分的形状。组织染色在超接收横截面的顶点处揭示了相对强烈的F型肌动蛋白,并且有限元模型表明这些区域中的局部收缩可以将圆形部分转换成观察到的形状。另一种模型表明,收缩性的这些变化取决于脑管的初始几何形状,因为可能需要局部收缩以在正常斑马鱼和外爪蟾(青蛙)大脑中打开最初闭合的内腔,而这种收缩机械在小鸡大脑中没有必要,第一次创建时已经打开了。我们得出结论,细胞骨骼收缩中的差异可能在产生形态学的差异和大脑中的差异方面发挥更大的作用,而不是预先欣赏的大脑。该研究是朝向潜在的形态学机制揭示规范神经表型如何在物种之间产生的阶段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号