...
首页> 外文期刊>Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems >Modeling, analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches
【24h】

Modeling, analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches

机译:使用人工神经网络,响应面方法和CFD模拟方法对气旋进行建模,分析和优化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The pressure drop is an important performance parameter to evaluate and design cyclone separators. In order to accurately predict the complex non linear relationships between pressure drop and geometrical dimensions, a radial basis neural network (RBFNN) is developed and employed to model the pressure drop for cyclone separators. The neural network has been trained and tested by experimental data available in literature. The result demonstrates that artificial neural networks can offer an alternative and powerful approach to model the cyclone pressure drop. Four mathematical models (Muschelknautz method "MM", Stairmand, Ramachandran and Shepherd & Lapple) have been tested against the experimental values. The residual error (the difference between the experimental value and the model value) of the MM model is the lowest. The analysis indicates the significant effect of the vortex finder diameter D_x and the vortex finder length S. the inlet width fa and the total height H_t. The response surface methodology has been used to fit a second order polynomial to the RBFNN. The second order polynomial has been used to get a new optimized cyclone for minimum pressure drop using the Nelder-Mead optimization technique. A comparison between the new design and the standard Stairmand design has been performed using CFD simulation. CFD results show that the new cyclone design is very close to the Stairmand high efficiency design in the geometrical parameter ratio, and superior for low pressure drop at nearly the same cut-off diameter. The new cyclone design results in nearly 75% of the pressure drop obtained by the old Stairmand design at the same volume flow rate.
机译:压降是评估和设计旋风分离器的重要性能参数。为了准确预测压降和几何尺寸之间的复杂非线性关系,开发了径向基神经网络(RBFNN)并将其用于对旋风分离器的压降建模。神经网络已经通过文献中提供的实验数据进行了训练和测试。结果表明,人工神经网络可以提供一种替代且强大的方法来模拟旋风分离器的压降。已针对实验值测试了四个数学模型(Muschelknautz方法“ MM”,Stairmand,Ramachandran和Shepherd&Lapple)。 MM模型的残留误差(实验值与模型值之差)最低。分析表明,旋涡仪直径D_x和旋涡仪长度S,入口宽度fa和总高度H_t的显着影响。响应面方法已用于将二阶多项式拟合到RBFNN。使用Nelder-Mead优化技术,二阶多项式已用于获得新的优化的旋风分离器,以实现最小压降。已使用CFD仿真对新设计和标准Stairmand设计进行了比较。 CFD结果表明,新的旋风分离器的几何参数比与Stairmand高效设计非常接近,并且在几乎相同的截止直径下具有出色的低压降性能。在相同的体积流量下,新的旋风分离器设计可将旧Stairmand设计获得的压降降低近75%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号