首页> 外文期刊>Plasma Sources Science & Technology >A miniature electrothermal thruster using microwave-excited plasmas: a numerical design consideration
【24h】

A miniature electrothermal thruster using microwave-excited plasmas: a numerical design consideration

机译:使用微波激发等离子体的微型电热推进器:数值设计考虑

获取原文
获取原文并翻译 | 示例
           

摘要

A miniature electrothermal thruster has been proposed using azimuthally symmetric microwave-excited plasmas, and numerical investigations have been conducted for design consideration. The microthruster consists of a microplasma source and a micronozzle. The former, made of a dielectric chamber 1 mm in radius and 1 0mm long covered with a grounded metal, produces high temperature plasmas in Ar at around atmospheric pressures. The latter converts such high thermal energy into directional kinetic energy through supersonic nozzle expansion to obtain the thrust required. The numerical model consists of three modules: a global model and an electromagnetic model for microplasma sources and a fluid model for micronozzle flows. Simulation was conducted separately for the plasma source and nozzle flow. The numerical results indicated that the microwave power absorbed in plasmas increases with increasing microwave frequency and relative permittivity of dielectrics, to achieve plasma density in the range 10(19) - 10(22) m(-3), electron temperature in the order of 10(4) K and heavy particle temperature in the range 103 - 104 K at a microwave input power of <= 10W; in practice, surface waves tend to be established in the microplasma source at high frequencies and permittivities. A certain combination of frequency and permittivity was found to significantly enhance the power absorption, enabling the microplasma source to absorb almost all microwave input powers. Moreover, the micronozzle flow was found to be very lossy because of high viscosity in thick boundary layers, implying that shortening the nozzle length with increasing half-cone angles suppresses the effects of viscous loss and thus enhances the thrust performance. A thrust of 2.5 - 3.5 mN and a specific impulse of 130 - 180 s were obtained for a given microwave power range of interest, which is applicable to a station-keeping manoeuvre for microspacecraft less than 10 kg.
机译:已经提出了一种使用方位角对称的微波激发等离子体的小型电热推进器,并且已经进行了数值研究以用于设计考虑。微推力器由微等离子体源和微喷嘴组成。前者由半径为1 mm,长为1 0mm的绝缘室制成,并覆盖有接地金属,该绝缘室在大约大气压下在Ar中产生高温等离子体。后者通过超音速喷嘴膨胀将如此高的热能转换成方向动能,以获得所需的推力。数值模型由三个模块组成:用于微等离子体源的全局模型和电磁模型,以及用于微喷嘴流动的流体模型。分别对等离子体源和喷嘴流量进行了模拟。数值结果表明,等离子体中吸收的微波功率随微波频率和电介质相对介电常数的增加而增加,以实现等离子体密度在10(19)-10(22)m(-3)范围内,电子温度为微波输入功率<= 10W时,重粒子温度为10(4)K,重粒子温度在103-104 K之间;在实践中,表面波倾向于在高频和介电常数的微等离子体源中建立。发现频率和介电常数的某种组合可以显着增强功率吸收,从而使等离子源吸收几乎所有的微波输入功率。此外,由于在厚边界层中的高粘度,发现微喷嘴流非常有损耗,这意味着随着半锥角的增加而缩短喷嘴长度会抑制粘性损失的影响,从而提高推力性能。对于给定的感兴趣微波功率范围,推力为2.5-3.5 mN,比冲为130-180 s,适用于重量小于10 kg的微型航天器的驻地操纵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号