...
【24h】

Regularity in capacity and the Dirichlet Laplacian

机译:容量规律和Dirichlet拉普拉斯算子

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Given an open set Omega in R-N, we prove that every function u in H-0(1)(Omega) boolean AND C((Omega) over bar) is zero everywhere on the boundary partial derivative Omega if and only if Omega is regular in capacity. If in addition Omega is bounded, then it is regular in capacity if and only if the mapping phi bar right arrow u(phi, Omega) from C(partial derivative Omega) into H(Omega) is injective, where u(phi, Omega) denotes the Perron solution of the Dirichlet problem. Let R be the set of all open subsets of R-N which are regular in capacity. Then one can define metrics d(l) and d(g) on R only involving the resolvent of the Dirichlet Laplacian. Convergence in those metrics will be defined to be the local/global uniform convergence of the resolvent of the Dirichlet Laplacian applied to the constant function 1. We prove that the spaces (R, d(g)) and ( R, d(l)) are complete and contain the set W of all open sets which are regular in the sense of Wiener ( or Dirichlet regular) as a closed subset.
机译:给定RN中的一个开放集Omega,我们证明,当且仅当Omega为正则时,边界偏导数Omega上的H-0(1)(Omega)布尔值AND C((omega over bar))中的每个函数u均为零在容量上。此外,如果Omega是有界的,则且仅当从C(偏导数Omega)到H(Omega)的phi bar右箭头u(phi,Omega)映射为内射时,容量才是规则的)表示Dirichlet问题的Perron解。令R为R-N的所有开放子集的集合,这些子集的容量是规则的。然后,可以在R上定义仅涉及Dirichlet拉普拉斯算子的解析度的度量d(l)和d(g)。这些度量的收敛将被定义为Dirichlet拉普拉斯算子应用于常数函数1的局部/全局一致收敛。我们证明了空间(R,d(g))和(R,d(l) )是完整的,并且包含所有开放集合的集合W,这些集合在维纳的意义上是规则的(或Dirichlet规则)作为闭合子集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号