首页> 外文期刊>Polymers research journal >FT-IR Spectroscopy Combined Infrared Synchrotron Light Improves Micro- and Macroscopic Study of Pavement Subgrade Composite Materials Stabilized Using Polyelectrolytic Polymers
【24h】

FT-IR Spectroscopy Combined Infrared Synchrotron Light Improves Micro- and Macroscopic Study of Pavement Subgrade Composite Materials Stabilized Using Polyelectrolytic Polymers

机译:FT-IR光谱结合红外同步加速器改进了用聚电解聚合物稳定的路面路基复合材料的微观和宏观研究

获取原文
获取原文并翻译 | 示例
           

摘要

FT-IR spectroscopy combined infrared synchrotron light micro-spectroscopy (SMIS) advanced techniques were employed to study soil stabilizing mechanisms of two ionic polyelectrolytic polymers (PP1 & PP2) on soil and pavement composite micro- and nanostructures. The main aim of this study was to probe the micro- macroscopic changes in stabilized materials using these non-traditional chemical stabilizers (PP1 & PP2) with the aim to improve their performance. Performance was assessed by measuring strength properties of composite specimens (plasticity index). Analyses of the SMIS spectra of treated samples indicated two prominent changes in vibrations in two regions: Firstly, the 3000 - 1400 cm"1 IR region was probably due to OH deformations of the hydroxyl groups of adsorbed water (1635 - 1600 cm~(-1)), and the expansive property of clay nanostructures; Secondly, in the 1400 - 950 cm~(-1) IR region, possibly due to the Si-0 framework, that is, silicate plates of type T-E or T-O-E, where any new bonding or rearrangement of the silicate tetrahedron molecule in the soil samples would be sensitive. Since statistical analysis showed that these changes were not significant (p<0.05) using conventional spectroscopy, the presence of a surface composite network (interface) binding the particles was observed when infrared synchrotron light spectroscopy was successfully employed to elucidate these changes at the micro scale level and confirmed with macroscopic measurements using HR-SEM. Conclusively, the demonstrated approach is a promising tool to obtain chemical information involved in microcrystalline formation in these kind of polymeric-enhanced complex composite interfaced materials. However, a further study under varied and optimized experimental conditions would provide more insight into the molecular behaviour of such modified composite reinforced materials.
机译:FT-IR光谱结合红外同步光显微技术(SMIS)的先进技术被用于研究两种离子聚电解质聚合物(PP1和PP2)在土壤和路面复合微结构和纳米结构上的土壤稳定机理。这项研究的主要目的是使用这些非传统的化学稳定剂(PP1和PP2)来探究稳定材料的微观变化,以提高其性能。通过测量复合材料样品的强度特性(可塑性指数)来评估性能。对处理过的样品的SMIS光谱分析表明,两个区域的振动发生了两个显着变化:首先,3000-1400 cm“ 1的IR区可能是由于吸附水的羟基(1635-1600 cm〜(- 1)),以及粘土纳米结构的膨胀特性;其次,在1400-950 cm〜(-1)的IR区,可能是由于Si-0骨架,即TE或TOE类型的硅酸盐板(如果有)土壤样品中硅酸四面体分子的新键合或重排很敏感,因为统计分析表明使用常规光谱法这些变化并不显着(p <0.05),因此存在一个与颗粒结合的表面复合网络(界面)观察到成功使用红外同步加速器光谱在微观水平上阐明这些变化并通过HR-SEM进行宏观测量所证实的结果,该证明的方法是一种有希望的观测方法在这类聚合物增强的复杂复合界面材料中,可以获得与微晶形成有关的化学信息。但是,在各种优化的实验条件下进行的进一步研究将提供对此类改性复合增强材料的分子行为的更多见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号