首页> 外文期刊>Chemical Engineering Science >CFD–DEM simulation of gas–solid reacting flows in fluid catalytic cracking (FCC) process
【24h】

CFD–DEM simulation of gas–solid reacting flows in fluid catalytic cracking (FCC) process

机译:流体催化裂化(FCC)过程中气固反应流的CFD-DEM模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The CFD–DEM coupled approach was used to simulate the complex gas–solid reacting flows in fluid cat?alytic cracking (FCC) processes accommodated in riser or downer reactors. Considering the solid catalyzed gas-phase reactions, the model particularly incorporated the descriptions for heat transfer behaviors between particles and between gas and particles, the instantaneous catalyst deactivation, and the lumped kinetics in the gas phase for FCC process, together with the governing equations for the hydrodynamics. The distinct advantage of the present approach is that the catalyst activity can be calculated in time by tracking the history of the particle movement with the occurrence of heat transfer and chemical reactions. The simulation results captured the major features of FCC process very well either in riser or in downer, which had reasonable agreement with the experimental data in the literature. The reduced selectivity to the desired intermediate products in risers, especially under high catalyst-to-oil ratios, can be clearly understood from the simulated backmixing behavior of solid catalysts and the deactivation of catalysts at different locations in the reactor, which caused the non-ideal reaction progress inside the reactor space. It can be concluded that this type of modeling approach forms a solid basis for the cross-scale modeling of general multi-phase catalytic reacting flows.
机译:CFD-DEM耦合方法用于模拟提升管或下降管反应器中流体催化裂化(FCC)过程中的复杂气固反应流。考虑到固体催化的气相反应,该模型特别结合了以下内容的描述:FCC过程中颗粒之间以及气体与颗粒之间的传热行为,瞬时催化剂失活以及气相中的集总动力学,以及控制方程式。流体力学。本方法的显着优点是,可以通过跟踪伴随传热和化学反应发生的颗粒运动的历史来及时计算催化剂活性。仿真结果很好地反映了FCC工艺在上升管或下降管中的主要特征,这与文献中的实验数据具有合理的一致性。从固体催化剂的模拟返混行为以及反应器中不同位置的催化剂失活可以清楚地了解到提升管中所需中间产物的选择性降低,尤其是在高催化剂/油比的情况下。反应器空间内的理想反应进度。可以得出结论,这种建模方法为一般的多相催化反应流的跨尺度建模奠定了坚实的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号