...
首页> 外文期刊>Polimery >EFFECTS OF ZONE HEATING ON PET FIBERS STRUCTURES AND DYNAMICS OF MELT SPINNING PROCESS.PART II.MATHEMATICAL MODEL
【24h】

EFFECTS OF ZONE HEATING ON PET FIBERS STRUCTURES AND DYNAMICS OF MELT SPINNING PROCESS.PART II.MATHEMATICAL MODEL

机译:区域加热对PET纤维结构和熔体纺丝动力学的影响。第二部分。数学模型

获取原文
获取原文并翻译 | 示例
           

摘要

Dynamic characteristics of PET fibers melt spinning with online zone heating was studied by computer simulation using mathematical model of the process of stationary spinning of a single filament from polymer melt,with stress-induced crystallization.The system of four differential equations(first-order ones)of the model were solved applying Runge-Kutta method using standard numerical procedures(see Eqs.1-4).The axial local velocity profiles[V(z)],velocity gradient(dV/dz),temperature[T(z)],tensile stress[DELTA p(z)]and crystallinity degree[X(z)]of molten polymer were calculated for the processes with the same heating zone temperature ranges,take-up velocities,fixed fibers'diameters and limited viscosity number values as in case of PET fibers described in Part I[9](Table 1,Fig.5-14).Model calculations predict an occurring of maximum take-up velocity resulting from strong increase in polymer viscosity due to fast oriented crystallization at higher take-up velocities.The maximum velocity and,connected with it,the range of take-up velocity not available for the process depend on the heating zone temperature(T_K).Calculated axial velocity profiles strongly change because of zone heating and the range of melt stretching with the maximum velocity gradient undergoes considerable shift from the spinneret to the heating zone.It results in considerable decrease in the fiber take-up stress,predicted by model,due to shortening of the filament section moving with the final take-up velocity.On the basis of calculations we conclude that the introduction of zone heating of temperature higher 30-40 deg C than glass transition temperature(T_g)leads to online crystallization of the melt at lower take-up velocities,similar to crystallization at high-speed spinning without heating zone.The decrease in take-up velocity,related to crystallization predicted,is a consequence of repeated polymer transition through crystallization temperature range.Melt stream crystallization,caused by fast oriented crystallization affected by high tensile stress is predicted in the model at very short section of the process line and is correlated with strong increase in tensile stress and reaching the take-up velocity level.The correlation of the calculated amorphous orientation just before the solidification point(Fig.19)with experimental values of amorphous orientation factor for PET fibefs investigated indicate that amorphous orientations of taken-up fibers is formed by tensile stress at solidification point.The comparison of experimentally determined amorphous orientation and crystallinity degree of the fibers tested with the model predictions(Fig.17-19)shows that the oriented crystallization parameter A depends on the polymer temperature.In the investigated range of heating zone temperature between T_g and temperature of maximum crystallization rate parameter A should increase with increasing temperature.
机译:通过计算机模拟,利用聚合物熔体单丝固定纺丝过程中的数学模型,研究了在线加热下PET纤维熔融纺丝的动态特性,并进行了应力诱导的结晶。该系统由四个微分方程组(一阶方程组)组成)通过Runge-Kutta方法使用标准数值程序求解(参见方程1-4)。轴向局部速度曲线[V(z)],速度梯度(dV / dz),温度[T(z)在相同加热区温度范围,吸收速度,固定纤维直径和有限黏度值的条件下,计算熔融聚合物的拉伸应力[Δp(z)]和结晶度[X(z)]。就像第一部分[9]中描述的PET纤维一样(表1,图5-14)。模型计算预测,由于较高粘度下的快速取向结晶,聚合物粘度会大大增加,因此会出现最大拉伸速度向上速度。最大速度与此相关的是,该过程无法获得的卷取速度范围取决于加热区温度(T_K)。计算的轴向速度曲线会由于区域加热而剧烈变化,并且熔体拉伸的范围会经历最大速度梯度由喷丝头到加热区的位移相当大。由于模型预测,由于随着最终的收线速度移动的长丝段缩短,纤维的收线应力大大降低。在计算的基础上,我们得出结论引入比玻璃化转变温度(T_g)高30-40摄氏度的区域加热导致熔体在较低的吸收速度下在线结晶,类似于在不加热区域的高速纺丝中的结晶。熔体速度与结晶的预测有关,是聚合物在结晶温度范围内反复转变的结果。在模型的生产线非常短的部分中预测了受高拉伸应力影响的进入结晶过程,该过程与拉伸应力的强烈增加并达到吸收速度水平有关。 (图19)用PET纤维的无定形取向因子的实验值表明,吸收纤维的无定形取向是由凝固点的拉伸应力形成的。实验确定的纤维的无定形取向和结晶度的比较模型预测(图17-19)表明,取向结晶参数A取决于聚合物温度。在研究的加热区温度T_g和最大结晶速率参数A的范围内,温度应随温度的升高而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号