...
首页> 外文期刊>Plasma physics reports >Measurements of the plasma density in the FTU tokamak by a pulsed time-of-flight X-wave refractometer
【24h】

Measurements of the plasma density in the FTU tokamak by a pulsed time-of-flight X-wave refractometer

机译:用脉冲飞行时间X波折射仪测量FTU托卡马克中的血浆密度

获取原文
获取原文并翻译 | 示例

摘要

On-line control over the plasma density in tokamaks (especially, in long-term discharges) requires reliable measurements of the averaged plasma density. For this purpose, a new method of density measure ments-a pulsed time-of-flight plasma refractometry-was developed and tested in the T-11M tokamak. This method allows one to determine the averaged density from the measured time delay of nanosecond microwave pulses propagating through the plasma. For an O-wave, the measured time delay is proportional to the line-aver aged density and is independent of the density profile (f f(p)) tau(o) approximate to k(o)1/f(2)integral N-l(x)dx. A similar formula is valid for an X-wave: tau(x) = approximate to k(x) f(2) + f(c)(2)/(f(2) - f(c)(2))(2) integral N-l(x)dx. Here, f is the frequency of the probing wave, fp is the plasma frequency, l = 4a is the path length for two-pass probing in the equatorial plane, a is the plasma minor radius, k(O) and k(X) are numerical factors, f, is the electron-cyclotron frequency at the axis of the plasma column, and f(P) f(c), f. Measurements of the time delay provide the same information as plasma interferometry, though they do no employ the effect of interference. When the conditions f(p) f(c),f are not satisfied, the measured time delay depends on the shape of the density profile. In this case, in order to determine the average density regardless of the density profile, it is necessary to perform simultaneous measurements at several probing frequencies in order to determine the average density. In ITER (B, - 5 T), a spectral window between the lower and upper cutoff frequencies in the range of 50-100 GHz can be used for pulsed time-of-flight X-wave refractometry. This appreciably simplifies the diagnostics and eliminates the problem of the first mirror. In this paper, the first results obtained in the FTU tokamak with a prototype of the ITER pulsed time-of-flight refractometer are presented. The geometry and layout of experiments similar to the planned ITER experiments are described. The density measured by pulsed time-of-flight refractometry is shown to agree well with the results obtained in FTU with a two-frequency scanning IR interferometer. The results obtained are analyzed, and the future experiments are discussed.
机译:在线控制托卡马克中的血浆密度(特别是在长期放电中)需要对平均血浆密度进行可靠的测量。为此,在T-11M托卡马克中开发并测试了一种新的密度测量方法-脉冲飞行时间等离子体折射仪。这种方法可以让人们从通过等离子体传播的纳秒级微波脉冲的测量时间延迟中确定平均密度。对于O波,测得的时间延迟与线平均老化密度成比例,并且与密度分布(f f(p))tau(o)近似,近似于k(o)1 / f(2)积分Nl(x)dx。类似的公式对于X波有效:tau(x)=近似于k(x)f(2)+ f(c)(2)/(f(2)-f(c)(2))( 2)积分Nl(x)dx。此处,f是探测波的频率,fp是等离子体频率,l = 4a是在赤道平面内两次通过的路径长度,a是等离子体次半径,k(O)和k(X)是数值因子f是等离子柱轴上的电子回旋频率,f(P) f(c),f。时延的测量结果提供了与等离子干涉测量相同的信息,尽管它们没有利用干扰的影响。当不满足条件f(p) f(c),f时,测得的时间延迟取决于密度分布图的形状。在这种情况下,为了确定平均密度而不管密度分布如何,必须在几个探测频率上同时执行测量以确定平均密度。在ITER(B,-5 T)中,可以将50-100 GHz范围内的下限和上限频率之间的光谱窗口用于脉冲飞行时间X波折射仪。这明显简化了诊断并消除了第一面镜子的问题。本文介绍了使用ITER脉冲飞行时间折光仪的原型在FTU托卡马克中获得的第一个结果。描述了与计划的ITER实验相似的实验的几何结构和布局。结果表明,用脉冲飞行时间折光法测得的密度与用两频扫描红外干涉仪在FTU中获得的结果非常吻合。分析获得的结果,并讨论未来的实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号