...
首页> 外文期刊>Plastics, Rubber and Composites >Delamination growth during fatigue of advanced polymer matrix composites
【24h】

Delamination growth during fatigue of advanced polymer matrix composites

机译:先进聚合物基复合材料疲劳过程中的分层增长

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Advanced polymer matrix composites such as carbon fibre reinforced polymers (CFRP),9 offer many advantages over more traditional materials such as metals. Usually, CFRP have greater strength weight and stiffness weight ratios than traditional engineering materials, which makes them ideal for use in many weight sensitive applications. especially in the aerospace sector. To maximise the use of these materials there is a need to gain a better understanding of how CFRP, and more generally FRPs. behave under fatigue load conditions. This work investigates the fatigue response and damage mechanisms found in a CFRP. Previous work has highlighted that fatigue with a compressive element is more damaging than pure tensile fatigue and that delamination is the dominant damage mechanism in both cases. However, in the tensile fatigue tests the primary delamination was on a different interface from the primary delamination found in the compression fatigue tests. The cause of this trend to delaminate along a particular interface has been investigated using mixed mode bend tests. These tests have been used to investigate the response of the interface to both static and fatigue loads. Initial tests have been carried out on the 0°/45° interface. Delamination growth was monitored at three levels of mode mixity, ratios of M{sub}I//M{sub}II of 1:1, 1:3 and 3:1.
机译:先进的聚合物基复合材料,例如碳纤维增强聚合物(CFRP)9,比金属等更传统的材料具有许多优势。通常,CFRP具有比传统工程材料更大的强度重量和刚度重量比,这使其成为许多对重量敏感的应用的理想选择。特别是在航空航天领域。为了最大程度地利用这些材料,需要更好地了解CFRP,尤其是FRP。在疲劳载荷条件下表现良好。这项工作研究了CFRP中的疲劳响应和损伤机理。先前的工作强调了压缩元件的疲劳比纯拉伸疲劳更具破坏性,并且分层是两种情况下的主要破坏机理。但是,在拉伸疲劳试验中,主要分层与在压缩疲劳试验中发现的主要分层位于不同的界面上。已经使用混合模式弯曲测试研究了这种趋势沿特定界面分层的原因。这些测试已用于调查界面对静态和疲劳载荷的响应。初始测试已在0°/ 45°接口上进行。在模式混合的三个水平下监测分层生长,M {sub} I // M {sub} II之比为1:1、1:3和3:1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号