首页> 外文期刊>Chemical Engineering Science >CFD analysis of turbulence in a baffled stirred tank, a three-compartment model
【24h】

CFD analysis of turbulence in a baffled stirred tank, a three-compartment model

机译:三室模型的折流板搅拌槽中湍流的CFD分析

获取原文
获取原文并翻译 | 示例
       

摘要

Three-compartment model was used to study non-homogeneity of mixing in a fully baffled stirred tank. Multiple reference frame (MRF) technique Was used for calculations. Calculations were performed to study the effects of agitator speed, impeller diameter, baffle width and distance of impeller from bottom of the tank on turbulent flow field. Three different zones of the vessel, that were a small zone near the impeller, another zone around the baffles, and a relatively large zone far from the impeller and baffles, named circulation zone, were investigated. Boundaries of these zones were determined using two different methods. The first method used gradient of energy dissipation rate while the other method used cumulative energy dissipation rate to determine the zone boundaries. Zone boundaries determined by both methods were comparable. The turbulent kinetic energy dissipation rate gradient was the preferred method due to its simplicity. Turbulent kinetic energy dissipation rate increased with agitator speed in all zones. Both turbulent kinetic energy dissipation rate and turbulent kinetic energy showed considerable change with impeller diameter at impeller zone, while no remarkable change was observed at baffle and Circulation zones. Three-compartment model parameters, impeller and baffle energy dissipation ratios lambda(i), lambda(b), impeller and baffle volume ratios mu(i), mu(b) and impeller and baffle exchange flow rates Q(i), Q(b) were obtained from CFD simulations. Impeller energy dissipation ratio, impeller exchange flow rate and baffle exchange flow rate increased while baffle volume ratio decreased with agitation rate and impeller diameter. Baffle energy dissipation ratio and impeller volume ratio showed no considerable change with agitation rate and impeller diameter. (C) 2008 Elsevier Ltd. All rights reserved.
机译:使用三室模型研究在完全折流的搅拌釜中混合的不均匀性。多参考框架(MRF)技术用于计算。进行了计算以研究搅拌器速度,叶轮直径,挡板宽度和叶轮距罐底部的距离对湍流场的影响。研究了容器的三个不同区域,分别是叶轮附近的一个小区域,挡板周围的另一个区域以及远离叶轮和挡板的相对较大的区域(称为循环区)。这些区域的边界使用两种不同的方法确定。第一种方法使用能量耗散率的梯度,而另一种方法使用累积能量耗散率来确定区域边界。通过两种方法确定的区域边界是可比较的。由于其简单性,湍流动能耗散率梯度是首选方法。在所有区域中,湍动能耗散率均随着搅拌器速度的增加而增加。在叶轮区,湍动能耗散率和湍动能都随着叶轮直径的变化而变化很大,而在挡板区和循环区则没有观察到明显的变化。三室模型参数,叶轮和折流板能量耗散率lambda(i),lambda(b),叶轮和折流板体积比mu(i),mu(b)以及叶轮和折流板交换流量Q(i),Q( b)是从CFD模拟获得的。叶轮消能比,叶轮交换流量和挡板交换流量随着搅拌速度和叶轮直径的增加而增加,而挡板体积比减小。挡板的能量耗散率和叶轮体积比没有随搅拌速度和叶轮直径的变化而变化。 (C)2008 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号