首页> 外文学位 >Turbulent mixing and chemical reaction in baffled stirred tank reactors: A comparison between experiments and a novel micromixing-based computational fluid dynamics model.
【24h】

Turbulent mixing and chemical reaction in baffled stirred tank reactors: A comparison between experiments and a novel micromixing-based computational fluid dynamics model.

机译:折流板搅拌釜反应器中的湍流混合和化学反应:实验与基于微混合的新型计算流体动力学模型之间的比较。

获取原文
获取原文并翻译 | 示例

摘要

The optimization of reaction processes to maximize the yield of a desired product while minimizing the formation of undesired by-products is one of the most important steps in process development for drug manufacturing or fine chemical production. In many situations the kinetics of product formation can be quite complex and involve a number of intermediate steps as well as parallel and serial reactions. This renders the systems sensitive to the operating conditions. Often, upon scale-up, a decrease in the yield of the desired product is experienced, while more undesired by-products are produced. A large number of interrelated variables influence the outcome of a process, and furthermore, most systems of process interest take place under turbulent conditions. Present methods for process design are inadequate because they involve the use of lumped parameters which fail to capture essential flow details and the rapid changes in the local concentration of reactants.;In recent years Computational Fluid Dynamics (CFD) has been successfully used to model the fluid dynamics of complex vessels (such as agitated reactors) and to predict the velocity distribution in turbulent systems such as mixers and reactors. In this work a novel approach based on the use of CFD coupled with micromixing models was used to predict the behavior of a multiple, competitive reaction system in cylindrical stirred tank reactors fitted with a variety of agitators. In particular, the following fast parallel competing reactions scheme (Bourne and Yu 1994) was modeled, and the results compared with original experimental data: NaOH A +HCl B &rarrr; k1 NaCl P +H2 O NaOH A +CH2ClCO2C2H 5 C &rarrr; k2 CH2ClCO 2Na Q +C2H5OH S The reactor was operated in semi-batch mode, with the limiting reagent (A) being slowly added to the contents of the reactor in which the other reagents (B and C) were already dissolved. The final yield of the undesired product (S) was experimentally measured. The flow field in the reactor was simulated using the Reynolds Stress (RSM) turbulence model. The full impeller geometry was incorporated in the CTD simulation using the Multiple Reference Frames (MRF) model. The reaction zone was modeled in a Lagrangian way using a multi-phase Volume of Fluid (VOF) model (Hirt and Nichols 1981). The interaction of turbulence and reaction was accounted for by means of the engulfment-based models for micro-mixing (Baldyga and Bourne 1989a; Baldyga and Bourne 1989b; Baldyga et al. 1997).;The agreement between experimental velocity distribution data and the results of the simulations was generally good. The micro-mixing models, in conjunction with CFD, predicted a final yield in close agreement with the experimental data, demonstrating that the proposed approach can be successfully used to model turbulent reactive systems without the need for experimental input.
机译:优化反应过程以最大化所需产物的产率,同时最小化不期望的副产物的形成是药物生产或精细化学生产过程开发中最重要的步骤之一。在许多情况下,产物形成的动力学可能非常复杂,涉及许多中间步骤以及平行和串行反应。这使得系统对操作条件敏感。通常,在规模扩大时,所需产物的产率会下降,而产生更多不希望的副产物。大量相互关联的变量会影响过程的结果,此外,大多数过程感兴趣的系统都是在动荡的条件下发生的。当前的工艺设计方法是不完善的,因为它们涉及到集总参数的使用,这些参数无法捕获基本的流量细节以及反应物的局部浓度的快速变化。近年来,计算流体动力学(CFD)已成功地用于对模型进行建模。复杂容器(例如搅拌反应堆)的流体动力学,并预测湍流系统(例如混合器和反应堆)中的速度分布。在这项工作中,使用基于CFD和微混合模型的新颖方法来预测装有各种搅拌器的圆柱形搅拌釜反应器中多重竞争反应系统的行为。特别是,对以下快速平行竞争反应方案(Bourne and Yu 1994)进行了建模,并将结果与​​原始实验数据进行了比较:NaOH A + HCl B&rarrr; k1 NaCl P + H2 O NaOH A + CH2ClCO2C2H 5 C&rarrr; k2 CH2ClCO2NaQ + C2H5OH S反应器以半间歇模式运行,将限制试剂(A)缓慢添加到已经溶解了其他试剂(B和C)的反应器内容物中。通过实验测量了不希望的产物(S)的最终产率。使用雷诺应力(RSM)湍流模型模拟反应器中的流场。使用多参考框架(MRF)模型将完整的叶轮几何形状纳入CTD仿真中。使用多相流体​​体积(VOF)模型以拉格朗日方式对反应区进行建模(Hirt和Nichols 1981)。湍流和反应的相互作用是通过基于吞噬的微混合模型来解释的(Baldyga和Bourne 1989a; Baldyga和Bourne 1989b; Baldyga等人1997)。实验速度分布数据与结果之间的一致性模拟效果总体良好。与CFD结合使用的微混合模型预测的最终收率与实验数据非常吻合,表明所提出的方法可以成功地用于湍流反应系统的建模,而无需实验输入。

著录项

  • 作者

    Akiti, Otute.;

  • 作者单位

    New Jersey Institute of Technology.;

  • 授予单位 New Jersey Institute of Technology.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:47:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号