首页> 外文期刊>Chemical science >Confined-space synthesis of nanostructured anatase, directed by genetically engineered living organisms for lithium-ion batteries
【24h】

Confined-space synthesis of nanostructured anatase, directed by genetically engineered living organisms for lithium-ion batteries

机译:基因工程活生物指导锂离子电池的纳米结构锐钛矿的密闭空间合成

获取原文
获取原文并翻译 | 示例
           

摘要

Biomineral formation processes in nature are temporally and spatially regulated under the functions of biomolecules in a confined space. It is potentially very productive to rationally design a mineralized system by taking into account confined space as well as biomolecules. The laboratory technique of "bacterial cell surface display" is an ideal platform to host catalytically active proteins in a three-dimensionally confined space. In the present study, aiming to regulate the synthesis of nanostructured TiO2 anatase, repeating segments of silaffin were displayed on Escherichia coli surfaces through genetic manipulation. The displayed protein electrostatically interacted with a titanium source and catalyzed the hydrolysis of titanium dioxide precursors through hydrogen bonding interactions on the cell surface. In the subsequent calcination process, the genetically modified cells not only served as a framework for producing rod-shaped TiO2 assembled by nanoparticles, but also provided a carbon source in situ. The size of nanoparticles was controlled by changing the number of tandem repeats of the protein segment. The as prepared TiO2 anatase exhibited unique characteristics including nanosized anatase crystals, mesoporous structure and carbon coating. When tested as the anode electrode of a lithium-ion battery, it showed excellent lithium storage performance. The carbon coated anatase anode shows a higher specific capacity of 207 mA h g(-1) after 200 cycles at a current rate of 1C and an ultra-long cycling lifetime of 5000 cycles with an outstanding retention capacity of 149 mA h g(-1) at a higher rate of 10C. This bioprocess-inspired approach may help broaden the scope and impact of nanosized biominerals.
机译:自然界中生物矿物质的形成过程在空间上受到生物分子功能的时空调节。通过考虑密闭空间以及生物分子来合理设计矿化系统可能非常有生产力。 “细菌细胞表面展示”的实验室技术是在三维有限空间中容纳催化活性蛋白的理想平台。在本研究中,旨在调节纳米结构的锐钛型TiO2的合成,通过遗传操作在大肠杆菌表面展示了重复的硅蜡片段。展示的蛋白质与钛源发生静电相互作用,并通过细胞表面的氢键相互作用催化二氧化钛前体的水解。在随后的煅烧过程中,转基因细胞不仅充当了生产纳米颗粒组装的棒状TiO2的框架,而且还就地提供了碳源。通过改变蛋白质区段的串联重复的数目来控制纳米颗粒的大小。所制备的TiO 2锐钛矿表现出独特的特性,包括纳米级锐钛矿晶体,中孔结构和碳涂层。当作为锂离子电池的阳极电极进行测试时,它显示了出色的锂存储性能。碳包覆的锐钛矿型阳极在200次循环后以1C的电流速率显示出更高的比容量207 mA hg(-1),超长循环寿命5000次,具有出色的149 mA hg(-1)保留容量。在更高的10C速率下。这种以生物工艺为灵感的方法可能有助于扩大纳米生物矿物的范围和影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号