首页> 外文期刊>Chemical Engineering Science >CFD simulation of dilute phase gas-solid riser reactors: part II - simultaneous adsorption of SO2-NOx from flue gases
【24h】

CFD simulation of dilute phase gas-solid riser reactors: part II - simultaneous adsorption of SO2-NOx from flue gases

机译:稀相气固提升管反应器的CFD模拟:第二部分-烟气中SO2-NOx的同时吸附

获取原文
获取原文并翻译 | 示例
           

摘要

Simultaneous adsorption of SO2-NOx in a riser configuration is a novel route for flue gas cleaning. The riser operates at a low flux (2 kg m(-2) s(-1)) of small diameter (d(p) = 60 mum) Na-gamma-Al2O3 sorbent particles. The reaction scheme is adopted from previous work (Ind. Eng. Chem. Res. 40 (2001) 119), without adjusting any of the kinetic parameters. The significant concentration gradient between the gas and solid phase mainly arises from the low solid fraction (typically 5 x 10(-4)) in the riser. Enhancing the fluctuating kinetic motion of gas and solid phase increases the SO2 adsorption, whereas the NO adsorption is decreased marginally. The solid recirculation in the top section of the riser, induced by the abrupt T outlets, significantly decreases the NO and NO2 removal, while the SO2 removal remains mostly unaffected. Therefore, it is desirable to avoid recirculation for a maximum NO, removal. A comparison of the 3D and a ID model shows that higher SO2 and NO removal efficiencies are predicted by the 3D model in the major part of the riser. However, these positive effects are largely neutralized by the negative effects of the outlet-induced recirculation, resulting in similar overall removal efficiencies calculated by the two models. Unlike the ID model, the 3D simulation shows a considerable axial variation in the solid fraction and slip velocity. The 3D simulation also allows to calculate the effects of outlet geometry on the flow and reaction fields. The reactor efficiency can be improved by modifying the outlet configuration to minimize the recirculation. (C) 2003 Elsevier Ltd. All rights reserved. [References: 25]
机译:提升管配置中同时吸附SO2-NOx是烟道气清洁的新途径。提升管以低通量(2 kg m(-2)s(-1))和小直径(d(p)= 60毫米)Na-γ-Al2O3吸附剂颗粒运行。该反应方案是从先前的工作(Ind.Eng.Chem.Res.40(2001)119)中采用的,而没有调节任何动力学参数。气相和固相之间的显着浓度梯度主要来自立管中的低固相分数(通常为5 x 10(-4))。增强气相和固相的波动动力学运动会增加SO2的吸附,而NO的吸附会略有减少。由突然的T出口引起的立管顶部的固体再循环,显着降低了NO和NO2的去除,而SO2的去除大部分未受影响。因此,希望避免再循环以最大程度地去除NO。 3D模型和ID模型的比较表明,通过3D模型可以预测立管主要部分的SO2和NO去除效率更高。但是,这些正面影响在很大程度上被出口诱导的再循环的负面影响所抵消,从而导致两个模型计算出的总体去除效率相近。与ID模型不同,3D模拟显示了固体分数和滑移速度的明显轴向变化。 3D模拟还允许计算出口几何形状对流场和反应场的影响。通过改变出口结构以最大程度地减少再循环,可以提高反应器效率。 (C)2003 Elsevier Ltd.保留所有权利。 [参考:25]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号