首页> 外文期刊>Chemical Engineering Science >Particle-fluid mass transfer in multiparticle systems at low Reynolds numbers
【24h】

Particle-fluid mass transfer in multiparticle systems at low Reynolds numbers

机译:低雷诺数下多粒子系统中的粒子-流体传质

获取原文
获取原文并翻译 | 示例
           

摘要

The problem of mass transfer between active solid particles and a fluid in multiparticle systems is examined with a focus on the stagnant and the low Reynolds number cases. This problem has attracted significant attention with regard to operation of fixed and fluidized beds. It is recognized that different Sherwood numbers can be defined depending on the choice of the reference concentration difference (driving force). An effective Sh has often been used to analyze experimental data based on an overall concentration difference across the bed. A local Sh can also be introduced based on a concentration difference close to the active particle. However, the use of these two different Sherwood numbers implies a different implementation of the mass balance equations.The mass balance equations are here analytically solved both under stagnant and non-stagnant conditions in a multiparticle system under suitable simplifying assumptions. Equations for the effective and local Sherwood numbers are derived for the general case and for the asymptotic limits. Allowance is given for the variation of bed voidage and volume fraction of active particles in the bed. It is shown that the local Sh only depends on geometrical and fluid-dynamics considerations and accordingly has a general validity. On the contrary, the effective Sh also depends on the assumptions made in deriving the mass balance equations across the bed (e.g., fluid plug flow). The use of the local Sh is therefore suggested.Results show that for Re→0 the limiting value of the local Sh is always a finite number, while the effective Sh tends to zero linearly with Re. It is shown that this result is simply a consequence of the plug flow assumption made in the bed mass balance. The general expressions derived here compare very well to experimental trends for the cases of large Reynolds numbers and of few isolated active spheres immersed in a bed of inert particles, where most of the reported experimental data gather. Unfortunately, for the most controversial case of very low Re in beds made entirely of active particles no reliable data appears to be available to check the accuracy of the expressions.
机译:研究了多颗粒系统中活性固体颗粒与流体之间的传质问题,重点研究了停滞和低雷诺数情况。关于固定床和流化床的操作,该问题引起了极大的关注。公认的是,可以根据参考浓度差(驱动力)的选择来定义不同的舍伍德数。通常使用有效的Sh来基于整个床层的总体浓度差异来分析实验数据。也可以基于接近活性颗粒的浓度差引入局部Sh。但是,这两个不同的舍伍德数的使用意味着质量平衡方程的实现方式不同。在适当的简化假设下,本文在多粒子系统的静止和非静止条件下均对质量平衡方程进行了解析求解。对于一般情况和渐近极限,得出有效和局部舍伍德数的方程式。给出了床空隙度和床中活性颗粒体积分数的变化。结果表明,局部Sh仅取决于几何和流体动力学方面的考虑,因此具有一般有效性。相反,有效Sh还取决于推导整个床层的质量平衡方程式(例如,流体塞流)时所作的假设。因此建议使用局部Sh。结果表明,对于Re→0,局部Sh的极限值始终是一个有限数,而有效Sh趋于与Re线性地归零。结果表明,该结果只是床层质量平衡中假定的塞流假设的结果。对于大的雷诺数和浸没在惰性颗粒床中的少数孤立的活性球体,此处推导的一般表达式与实验趋势非常吻合,其中收集了大多数报道的实验数据。不幸的是,对于最有争议的情况,即完全由活性颗粒制成的床中Re的含量极低,似乎没有可靠的数据可用来检查表达式的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号