...
首页> 外文期刊>Plant signaling & behavior >SignaI percolation through plants and the shape of the calcium signature
【24h】

SignaI percolation through plants and the shape of the calcium signature

机译:通过植物的渗透和钙签名的形状

获取原文
获取原文并翻译 | 示例
           

摘要

Plants respond to almost any kind of external stimulus with transients in their cytoplasmic free calcium concentration ([Ca~(2+)]). A huge variety of kinetics recorded by optical techniques has been reported in the past. This variety has been creditedthe specificity needed to explain how information about incoming stimuli is evaluated by the organism and turned into the right physiological responses which provide advantages for survival and reproduction. A physiological response often takes place away from the site of stimulation. This requires cell-to-cell communication. Hence, responding cells are not necessarily directly stimulated but rather receive an indirect stimulus via cell-to-cell communication. It appears unlikely that the '[Ca~(2+)] signature' in the primarily stimulated cell is conveyed over long distances via cell-to-cell communication from the 'receptor cells' to the 'effector cells'. Here, a novel aspect is highlighted to explain the variety of [Ca~(2+)] kinetics seen by integrating methods of [Ca~(2+)](. recording. Plants can generally be seen as cellular automata with specific morphology and capable for cell-to-cell communication. Just a few rules are needed to demonstrate how waves of [Ca~(2+)] -increases percolate through theorganism and thereby deliver a broad variety of'signatures'. Modelling intercellular signalling may be a possible way to find explanations for different kinds of signal transmission, signal amplification, wave formation, oscillations and stimulus-response coupling. The basic examples presented here show that care has to be taken when interpreting cellular '[Ca~(2+)] signatures' recorded by optical techniques which integrate over a big number of cells or even whole plants.
机译:植物几乎可以通过其胞质游离钙浓度([Ca〜(2+)])产生的瞬态响应任何形式的外部刺激。过去已经报道了通过光学技术记录的多种动力学。这种多样性被认为是解释生物如何评估有关传入刺激的信息并转化为正确的生理反应(为生存和繁殖提供优势)所必需的特异性。生理反应通常发生在刺激部位之外。这需要单元间通信。因此,不一定直接刺激响应细胞,而是通过细胞间通信接受间接刺激。似乎不太可能通过从“受体细胞”到“效应细胞”的细胞间通信,将主要受激细胞中的“ [Ca〜(2+)]签名”传递到很长的距离。在这里,突出一个新的方面来解释通过整合[Ca〜(2 +)](。)记录方法观察到的[Ca〜(2+)]动力学的变化,通常可以将植物视为具有特定形态和形态的细胞自动机。只需几条规则即可证明[Ca〜(2+)]-的波如何通过生物渗透并从而传递出各种各样的“签名”。可能找到有关各种信号传输,信号放大,波形形成,振荡和刺激-响应耦合的解释的方法,此处给出的基本示例表明,在解释细胞的“ [Ca〜(2+)]”签名时必须格外小心是通过光学技术记录下来的,该技术将大量细胞甚至整个植物整合在一起。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号