首页> 外文期刊>Plant Physiology and Biochemistry >Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress
【24h】

Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress

机译:了解大豆的非生物胁迫耐受机制:大豆对干旱和洪涝胁迫响应的比较评估

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690 drought tolerant, Pana - drought susceptible, PI 408105A - flooding tolerant, S99-2281 - flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress. (C) 2014 Elsevier Masson SAS. All rights reserved.
机译:大豆中已经发现了许多抗旱和抗洪的来源,但是人们对潜在的分子和生理机制知之甚少。因此,阐明不同植物对这些非生物胁迫的反应并了解赋予耐受性的机制非常重要。为了实现这一目标,我们使用了在温室条件下种植的四种不同的大豆(最大大豆)基因型(PI 567690耐旱,Pana-易受干旱,PI 408105A-耐水,S99-2281-易受洪),并比较了基因型对干旱和水淹的基因型响应生理,生化和细胞水平。我们还对这些变异进行了量化,并试图推断它们在大豆的抗旱和抗洪能力中的作用。我们的结果表明,干旱和洪水胁迫下,不同的机制有助于减少净光合作用。在干旱胁迫下,ABA和气孔导度导致光合作用速率降低。在洪水压力下,淀粉颗粒的积累起主要作用。耐旱基因型PI 567690和PI 408105A的质体球数高于易感的Pana和S99-2281。干旱胁迫增加了大多数基因型中质体球的数量和大小,表明其可能在胁迫耐受性中发挥作用。有趣的是,有七个原纤维蛋白蛋白定位在质体小球中,分别在耐干旱和耐洪基因型PI 567690和PI 408105A中上调,而在对干旱敏感的Pana基因型中下调。这些结果表明,原纤维蛋白,FBN1a,1b和7a在大豆对干旱和洪水胁迫的响应中具有潜在作用。 (C)2014 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号