首页> 外文期刊>Plant Physiology and Biochemistry >Identification of structural elements involved in fine-tuning of the transport activity of the rice ammonium transporter OsAMT1;3
【24h】

Identification of structural elements involved in fine-tuning of the transport activity of the rice ammonium transporter OsAMT1;3

机译:鉴定涉及微调水稻铵转运蛋白OsAMT1; 3的运输活动的结构元素

获取原文
获取原文并翻译 | 示例
       

摘要

Ammonium transporters (AMTs) are major routes for plant uptake of the NH4+-form nitrogen. Plant AMTs mediate predominantly the uptake of NH4+ and to a lesser extent, its organic analog methylammonium (MeA(+)). Mutagenesis studies on potential phosphorylation residues have achieved solid recognition that alteration of the phosphorylation status can result in allosteric regulation and impair the functionality of plant AMTs. However, molecular insights to the fine-tuning of a functional ammonium transporter remain less clear. In this report, we demonstrate that the rice root expressed OsAMT1;3 (Oryza sativa ammonium transporter 1;3) functions as a typical high-affinity NH4+ transporter and is weakly permeable to MeA(+) using growth assays in NH4+ uptake defective yeast cells and electrophysiological measurements in Xenopus oocytes. Upon screening of six point mutations generated with the transporter, we identified two amino acid residues involved in the functional modulation of OsAMT1;3. The H199E mutation caused loss of transport activity whereas other five mutations retained the functionality of OsAMT1;3. Furthermore, the L56F mutation enabled respectively 5- and 3.5 -fold increased capability for NH4+ and MeA(+) uptake with several -fold decreased affinity (K-m) and accelerated V-max values. Surprisingly, yeast cells expressing the L56F mutation shown increased Na+ toxicity leading to a speculation that enhanced Na+ permeation occurred with this mutation. The phenomenon was further supported by the observation of significant Na+ uptake current in oocytes. Our results seemingly support a speculation that the L56F mutation of OsAMT1;3 widens the substrate passage tunnel and allows enhanced permeability to NH4+ and larger ions MeA(+) and Na+. (C) 2016 Elsevier Masson SAS. All rights reserved.
机译:铵转运蛋白(AMT)是植物吸收NH4 +形式氮的主要途径。植物AMT主要介导NH4 +的吸收,并在较小程度上介导其有机类似物甲基铵(MeA(+))。对潜在的磷酸化残基的诱变研究已获得坚实的认识,即磷酸化状态的改变可导致变构调节并损害植物AMT的功能。然而,对功能性铵转运蛋白的微调的分子见解仍然不清楚。在此报告中,我们证明了水稻根表达的OsAMT1; 3(稻(Oryza sativa铵转运蛋白1; 3)的功能)是典型的高亲和力NH4 +转运蛋白,并且在NH4 +吸收缺陷型酵母细胞中使用生长测定法对MeA(+)具有弱渗透性爪蟾卵母细胞的电生理和电生理测量。在筛选出由转运蛋白产生的六个点突变后,我们鉴定出两个与OsAMT1; 3的功能调节有关的氨基酸残基。 H199E突变导致转运活性丧失,而其他五个突变保留了OsAMT1; 3的功能。此外,L56F突变使NH4 +和MeA(+)的吸收能力分别提高了5倍和3.5倍,而亲和力(K-m)降低了几倍,V-max值加快了。出乎意料的是,表达L56F突变的酵母细胞显示出增加的Na +毒性,导致推测该突变发生了增强的Na +渗透。观察到卵母细胞中明显的Na +吸收电流进一步支持了该现象。我们的结果似乎支持一种推测,即OsAMT1; 3的L56F突变会加宽底物通道并允许增强对NH4 +和较大离子MeA(+)和Na +的渗透性。 (C)2016 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号