首页> 外文期刊>Plant physiology >Genomic computing. Explanatory analysis of plant expression profiling datausing machine learning [Review]
【24h】

Genomic computing. Explanatory analysis of plant expression profiling datausing machine learning [Review]

机译:基因组计算。利用机器学习探索植物表达谱数据[综述]

获取原文
获取原文并翻译 | 示例
           

摘要

"Actually, the orgy of fact extraction in which everybody is currently engaged has, like most consumer economies, accumulated a vast debt. This is a debt of theory, and some of us are soon going to have an exciting time paying it back--with interest, I hope." --Sydney Brenner, In Theory, 1997 As with every other organism whose genome has been sequenced (Hinton, 1997; Bork et al., 1998), a chief finding in plants (Bevan et al., 1999; Somerville and Somerville, 1999) is the presence of a vast number of genes (many with no relatives in the databases) whose existence, let alone function, had previously gone unrecorded. The importance of finding the function of these genes has led to what amounts to a complete reversal of conventional scientific strategies (Brent, 1999, 2000; Kell and Mendes, 2000), in which one would start with a phenotype (e.g. flower color) and devise experiments that would lead one to the genes whose products were responsible for producing that phenotype. Now, the dawn of the postgenomic era has (consequently) spawned major commercial and academic programs in which plants with more or less defined genotypes (e.g. knockouts; Martienssen, 1998) are being subjected to parallel and high-throughput analyses at the level of the transcriptome (Ruan et al., 1998; Schaffer et al., 2000; Schenk et al., 2000), the proteome (Santoni et al., 1998; Jacobs et al., 2000; Prime et al., 2000; van Wijk, 2000), the metabolome (Oliver et al., 1998; Trethewey et al., 1999; Fiehn et al., 2000; Johnson et al., 2000; Kell and Mendes, 2000; Raamsdonk et al., 2001; Trethewey, 2001), and the phenotype (Rieger et al., 1999), which will provide the wherewithal to assess the contribution of different genes through the activities of their products to the overall functioning of cells and organisms. The problem at hand is then how best to exploit the high-dimensional data floods so generated (e.g. with thousands of gene products or metabolites) for providing the comparatively lowdimensional explanations that we require at higher levels of organization (this gene is or is not important, for example, in cold tolerance).
机译:“实际上,与大多数消费者经济体一样,目前每个人都参与的事实提取狂欢已积累了巨大的债务。这是理论上的债务,我们中的一些人很快就会有一个令人兴奋的时光来偿还它-我希望有兴趣。” -悉尼·布伦纳(Sydney Brenner),理论上,1997与其他已对其基因组进行测序的生物一样(Hinton,1997; Bork等,1998),植物的主要发现(Bevan等,1999; Somerville和Somerville,1999)。 )是大量基因的存在(许多数据库中没有亲戚),其存在(更不用说功能了)以前从未被记录过。寻找这些基因的功能的重要性已导致完全颠倒了常规的科学策略(Brent,1999,2000; Kell和Mendes,2000),其中一个方法以表型(例如花的颜色)开始,设计一些实验,将导致其产物负责产生该表型的基因。现在,后基因组时代的曙光(因此)催生了主要的商业和学术计划,在这些计划中,对具有或多或少明确基因型的植物(例如敲除基因; Martienssen,1998年)进行了平行和高通量分析。转录组(Ruan等,1998; Schaffer等,2000; Schenk等,2000),蛋白质组(Santoni等,1998; Jacobs等,2000; Prime等,2000; van Wijk) (2000);代谢组(Oliver等,1998; Trethewey等,1999; Fiehn等,2000; Johnson等,2000; Kell和Mendes,2000; Raamsdonk等,2001; Trethewey,2000)。 (2001)和表型(Rieger等,1999),这将提供评估不同基因通过其产物的活性对细胞和生物体整体功能的贡献的方法。那么眼前的问题是如何最好地利用如此产生的高维度数据泛滥(例如,成千上万的基因产物或代谢产物)来提供我们在更高层次的组织中需要的相对低维度的解释(该基因是重要的还是不重要的) (例如,耐寒性)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号