...
首页> 外文期刊>Chemical Engineering Research & Design: Transactions of the Institution of Chemical Engineers >Direct syngas to DME as a clean fuel: The beneficial use of ultrasound for the preparation of CuO-ZnO-Al2O3/HZSM-5 nanocatalyst
【24h】

Direct syngas to DME as a clean fuel: The beneficial use of ultrasound for the preparation of CuO-ZnO-Al2O3/HZSM-5 nanocatalyst

机译:将合成气直接用作清洁燃料的二甲醚:超声在制备CuO-ZnO-Al2O3 / HZSM-5纳米催化剂中的有益用途

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A series of CuO-ZnO-Al2O3/HZSM-5 nanocatalysts prepared by impregnation, co-precipitation-physically mixing and combined co-precipitation-ultrasound methods and their catalytic activity investigated toward direct conversion of syngas to DME. BET, XRD, FESEM, TPR-H2 and FTIR techniques were used to characterize nanocatalysts. XRD and FTIR results showed that structure of HZSM-5 is not damaged even after it is loaded with CuO-ZnO-Al2O3 nanoparticles. TPR-H2 profiles indicated that reducibility of co-precipitation-ultrasound nanocatalyst is higher than other catalysts. It is found that employing ultrasound energy has great influence on the dispersion of nanocatalyst and its catalytic performance. Size distribution histogram of this nanocatalyst indicated that active phase particle size is between 25.7 and 125.4 nm and their average size is 47.86 nm. The physically mixing of CuO-ZnO-Al2O3 and HZSM-5 resulted in the low catalytic activity, indicating that the closest packing of both active sites for CO hydrogenation and methanol dehydration is necessary for direct synthesis of DME. The nanocatalyst loses negligible activity over the course of reaction due to coke formation on copper species.
机译:研究了通过浸渍,共沉淀-物理混合和联合共沉淀-超声方法制备的一系列CuO-ZnO-Al2O3 / HZSM-5纳米催化剂,并研究了其对合成气直接转化为DME的催化活性。 BET,XRD,FESEM,TPR-H2和FTIR技术用于表征纳米催化剂。 XRD和FTIR结果表明,即使HZSM-5负载有CuO-ZnO-Al2O3纳米颗粒,其结构也不会受到破坏。 TPR-H2曲线表明,共沉淀-超声纳米催化剂的还原性高于其他催化剂。发现利用超声能量对纳米催化剂的分散及其催化性能有很大的影响。该纳米催化剂的尺寸分布直方图表明活性相的粒径在25.7和125.4nm之间,并且它们的平均粒径是47.86nm。 CuO-ZnO-Al2O3和HZSM-5的物理混合导致催化活性低,这表明直接合成DME所需的CO加氢和甲醇脱水两个活性位最紧密堆积。由于在铜物质上形成焦炭,因此纳米催化剂在反应过程中损失的活性可忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号