【24h】

Shocks and cold fronts in galaxy clusters

机译:星系团的冲击和冷锋

获取原文
获取外文期刊封面目录资料

摘要

The currently operating X-ray imaging observatories provide us with an exquisitely detailed view of the Megaparsec-scale plasma atmospheres in nearby galaxy clusters. At z<0.05, the Chandra's 1″ angular resolution corresponds to linear resolution of less than a kiloparsec, which is smaller than some interesting linear scales in the intracluster plasma. This enables us to study the previously unseen hydrodynamic phenomena in clusters: classic bow shocks driven by the infalling subclusters, and the unanticipated “cold fronts,” or sharp contact discontinuities between regions of gas with different entropies. The ubiquitous cold fronts are found in mergers as well as around the central density peaks in “relaxed” clusters. They are caused by motion of cool, dense gas clouds in the ambient higher-entropy gas. These clouds are either remnants of the infalling subclusters, or the displaced gas from the cluster's own cool cores. Both shock fronts and cold fronts provide novel tools to study the intracluster plasma on microscopic and cluster-wide scales, where the dark matter gravity, thermal pressure, magnetic fields, and ultrarelativistic particles are at play. In particular, these discontinuities provide the only way to measure the gas bulk velocities in the plane of the sky. The observed temperature jumps at cold fronts require that thermal conduction across the fronts is strongly suppressed. Furthermore, the width of the density jump in the best-studied cold front is smaller than the Coulomb mean free path for the plasma particles. These findings show that transport processes in the intracluster plasma can easily be suppressed. Cold fronts also appear less prone to hydrodynamic instabilities than expected, hinting at the formation of a parallel magnetic field layer via magnetic draping. This may make it difficult to mix different gas phases during a merger. A sharp electron temperature jump across the best-studied shock front has shown that the electron–proton equilibration timescale is much shorter than the collisional timescale; a faster mechanism has to be present. To our knowledge, this test is the first of its kind for any astrophysical plasma. We attempt a systematic review of these and other results obtained so far (experimental and numerical), and mention some avenues for further studies.
机译:当前正在运行的X射线成像天文台为我们提供了附近星系团兆兆帕尺度的等离子大气的精美详细视图。在z <0.05时,钱德拉的1''角分辨率对应于小于一千帕的线性分辨率,该分辨率小于簇内血浆中的某些有趣的线性比例。这使我们能够研究团簇中以前看不见的流体动力学现象:由下沉的团簇驱动的经典弓形冲击,以及意想不到的“冷锋”或具有不同熵的气体区域之间的急剧接触不连续性。在合并中以及在“松弛”集群中的中央密度峰值附近发现了无处不在的冷锋。它们是由周围高熵气体中冷的致密气体云的运动引起的。这些云要么是降落的子团的残余物,要么是来自星团自身冷芯的置换气体。激波锋和冷锋都提供了新颖的工具,可以在微观和集群范围内研究团簇内部的等离子体,其中暗物质重力,热压力,磁场和超相对论粒子正在发挥作用。特别是,这些不连续性是测量天空平面中气体体积速度的唯一方法。在冷锋处观察到的温度跃变要求强烈抑制跨锋的热传导。此外,研究最好的冷锋的密度跃迁宽度小于等离子体颗粒的库仑平均自由程。这些发现表明,可以容易地抑制簇内血浆中的转运过程。冷锋也似乎不像预期的那样容易发生水动力不稳定性,这暗示了通过磁悬垂形成平行磁场层。这可能使得在合并过程中难以混合不同的气相。横跨研究最好的激波前沿的急剧的电子温度跃变表明,电子-质子平衡时标比碰撞时标短得多。必须有一个更快的机制。据我们所知,该测试是任何天体物理等离子体测试中的首例。我们尝试对迄今为止获得的这些和其他结果(实验和数值)进行系统的回顾,并提及一些进一步研究的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号