...
首页> 外文期刊>Physics Reports: A Review Section of Physics Letters (Section C) >Elementary excitations in isotope-mixed crystals
【24h】

Elementary excitations in isotope-mixed crystals

机译:同位素混合晶体中的基本激发

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Over the last five decades, the isotope effect has been one of the major research in solids. Most of the physical properties of a solid depend to a greater or lesser degree on its isotopic composition. Scientific interest, technological promise and increased availability of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor and insulator crystals. A great number of stable isotopes and well-developed methods of their separation has made it possible to date to grow crystals of C, LiH, ZnO, ZnSe, CuCl, GaN, GaAs, CdS, Cu2O, Si, Ge and alpha-Sn with a controllable isotopic composition. The use of such objects allows the investigation of not only the isotope effects in lattice dynamics (vibrational, elastic and thermal properties) but also the influence of such effects on the electronic states via electron-phonon coupling (the renormalization of the band-to-band transition energy E-g, the exciton binding energy E-B and the size of the longitudinal-transverse splitting Delta(LT)). The thermal conductivity enhancement in the isotopically enriched materials amounts (C; Ge; Si) to almost 10% at room temperature and is close to a factor of six at the thermal conductivity maximum around 20 K (Si-case). The change in the lattice constant is Delta a/a similar to 10(-3)-10(-4), while the change delta C-ik in the elastic constants amounts to several percent. The nonlinear dependence of the free exciton luminescence (especially (CxC1-x)-C-12-C-13, LiHxD1-x) intensity on the excitation density allows to consider these crystals as potential solid-state lasers in the UV part of the spectrum. Isotopic information storage may consist in assigning the information 'zero' or 'one' to mono-isotopic microislands (or even to single atoms) within a bulk crystalline (or thin film) structure. Isotope information storage and isotope quantum computers are briefly discussed. (c) 2005 Elsevier B.V. All rights reserved.
机译:在过去的五十年中,同位素效应一直是固体领域的主要研究之一。固体的大多数物理性质或多或少地取决于其同位素组成。科学兴趣,技术前景和高浓缩同位素的可用性不断提高,导致同位素控制的半导体和绝缘体晶体的实验和理论研究数量急剧增加。大量稳定的同位素及其完善的分离方法已使迄今为止可以生长C,LiH,ZnO,ZnSe,CuCl,GaN,GaAs,CdS,Cu2O,Si,Ge和α-Sn的晶体可控制的同位素组成。使用此类物体不仅可以研究晶格动力学中的同位素效应(振动,弹性和热学性质),还可以研究此类效应通过电子-声子耦合对电子态的影响(能带至电子的重新归一化)带跃迁能Eg,激子结合能EB和纵向横向分裂Delta(LT)的大小。在室温下,同位素富集材料的热导率提高量(C; Ge; Si)几乎达到10%,并且在20 K左右的最大热导率下(硅壳)接近六倍。晶格常数的变化为Δa / a,类似于10(-3)-10(-4),而弹性常数的变化ΔC-ik为百分之几。自由激子发光(特别是(CxC1-x)-C-12-C-13,LiHxD1-x)强度与激发密度的非线性相关性使我们可以将这些晶体视为潜在的固态激光器,位于激光器的UV部分。光谱。同位素信息存储可以包括将信息“零”或“一个”分配给体晶体(或薄膜)结构内的单同位素微岛(甚至单原子)。简要讨论了同位素信息存储和同位素量子计算机。 (c)2005 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号