首页> 外文期刊>Physics Reports: A Review Section of Physics Letters (Section C) >Hamilton-Jacobi-Bellman framework for optimal control in multistage energy systems [Review]
【24h】

Hamilton-Jacobi-Bellman framework for optimal control in multistage energy systems [Review]

机译:用于多级能源系统中最优控制的Hamilton-Jacobi-Bellman框架[综述]

获取原文
获取外文期刊封面目录资料

摘要

We enunciate parallelism for structures of variational principles in mechanics and thermodynamics in terms of the duality for thermoeconomic problems of maximizing of production profit and net profit which can be transferred to duality for least action and least abbreviated action which appear in mechanics. With the parallelism in mind, we review theory and macroscopic applications of a recently developed discrete formalism of Hamilton-Jacobi type which arises when Bellman's method of dynamic programming is applied to optimize active (work producing) and inactive (entropy generating) multistage energy systems with free intervals of an independent variable. Our original contribution develops a generalized theory for discrete processes in which these intervals can residue in the model inhomogeneously and can be constrained. We consider applications to multistage thermal machines, controlled unit operations, spontaneous relaxations, nonlinear heat conduction, and self-propagating reaction-diffusion fronts. They all satisfy a basic functional equation that leads to the Hamilton-Jacobi-Bellman equation (HJB equation) and a related discrete optimization algorithm with a maximum principle for a Hamiltonian. Correspondence is shown with the well-known HJB theory for continuous processes when the number of stages approaches an infinity. We show that a common unifying criterion, which is the criterion of a minimum generated entropy, can be proven to act locally in the majority of considered cases, although the related global statements can be invalid far from equilibrium. General limits are found which bound the consumption of the classical work potential (exergy) for finite durations. (C) 2000 Elsevier Science B.V. All rights reserved. [References: 102]
机译:我们阐述了力学和热力学中变分原理的结构的并行性,即热经济问题的对偶性,即使生产利润和净利润最大化的热经济学问题,这些对偶性可以转化为对偶性,而对偶性在力学上表现得最少。考虑到并行性,我们回顾了最近开发的Hamilton-Jacobi型离散形式主义的理论和宏观应用,这种形式主义是在将Bellman的动态规划方法应用于优化有功(产生工作)和非活动(产生熵)的多级能源系统时产生的自由变量的自由间隔。我们最初的贡献是为离散过程开发了一个广义的理论,其中这些间隔可能不均匀地残留在模型中并受到约束。我们考虑将其应用于多级热机,受控单元操作,自发松弛,非线性热传导和自蔓延反应扩散前沿。它们都满足一个导致汉密尔顿-雅各比-贝尔曼方程(HJB方程)的基本功能方程,以及一个相关的离散优化算法,该算法具有最大的哈密顿量原理。当阶段数接近无穷大时,连续过程的众所周知的HJB理论显示出对应关系。我们表明,在大多数考虑的情况下,可以证明一个通用的统一标准(即最小产生的熵的标准)在局部起作用,尽管相关的全局语句在远离平衡的情况下可能是无效的。发现了在有限的时间内限制经典工作潜力(火用)消耗的一般限制。 (C)2000 Elsevier Science B.V.保留所有权利。 [参考:102]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号