...
首页> 外文期刊>Physics Reports: A Review Section of Physics Letters (Section C) >Microcanonical thermodynamics and statistical fragmentation of dissipative systems. The topological structure of the N-body phase space
【24h】

Microcanonical thermodynamics and statistical fragmentation of dissipative systems. The topological structure of the N-body phase space

机译:微经典热力学和耗散系统的统计碎片。 N体相空间的拓扑结构

获取原文

摘要

This review is addressed to colleagues working in different fields of physics who are interested in the concepts of microcanonical thermodynamics, its relation and contrast to ordinary, canonical or grandcanonical thermodynamics, and to get a first taste of the wide area of new applications of thermodynamical concepts like hot nuclei, hot atomic clusters and gravitating systems. Microcanonical thermodynamics describes how the volume of the N-body phase space depends on the globally conserved quantities like energy, angular momentum, mass, charge, etc. Due to these constraints the microcanonical ensemble can behave quite differently from the conventional, canonical or grandcanonical ensemble in many important physical systems. Microcanonical systems become inhomogeneous at first-order phase transitions, or with rising energy, or with external or internal long-range forces like Coulomb, centrifugal or gravitational forces. Thus, fragmentation of the system into a spatially inhomogeneous distribution of various regions of different densities and/or of different phases is a genuine characteristic of the microcanonical ensemble. In these cases which are realized by the majority of realistic systems in nature, the microcanonical approach is the natural statistical description. We investigate this most fundamental form of thermodynamics in four different nontrivial physical cases: (I) Microcanonical phase transitions of first and second order are studied within the Potts model. The total energy per particle is a nonfluctuating order parameter which controls the phase which the system is in. In contrast to the canonical form the microcanonical ensemble allows to tune the system continuously from one phase to the other through the region of coexisting phases by changing the energy smoothly. The configurations of coexisting phases carry important informations about the nature of the phase transition. This is more remarkable as the canonical ensemble is blind against these configurations. It is shown that the three basic quantities which specify a phase transition of first order - Transition temperature, latent heat, and interphase surface entropy - can be well determined for finite systems from the caloric equation of state T(E) in the coexistence region. Their values are already for a lattice of only similar to 30 * 30 spins close to the ones of the corresponding infinite system. The significance of the backbending of the caloric equation of state T(E) is clarified. It is the signal for a phase transition of first order in a finite isolated system. (II) Fragmentation is shown to be a specific and generic phase transition of finite systems. The caloric equation of state T(E) for hot nuclei is calculated. The phase transition towards fragmentation can unambiguously be identified by the anomalies in T(E). As microcanonical thermodynamics is a full N-body theory it determines all many-body correlations as well. Consequently, various statistical multi-fragment correlations are investigated which give insight into the details of the equilibration mechanism. (III) Fragmentation of neutral and multiply charged atomic clusters is the next example of a realistic application of microcanonical thermodynamics. Our simulation method, microcanonical Metropolis Monte Carlo, combines the explicit microscopic treatment of the fragmentational degrees of freedom with the implicit treatment of the internal degrees of freedom of the fragments described by the experimental bulk specific heat. This micro-macro approach allows us to study the fragmentation of also larger fragments. Characteristic details of the fission of multiply charged metal clusters find their explanation by the different bulk properties. (IV) Finally, the fragmentation of strongly rotating nuclei is discussed as an example for a microcanonical ensemble under the action of a two-dimensional repulsive force.
机译:这篇综述针对的是在物理学的不同领域工作的同事,这些同事对微规范热力学的概念,与普通,规范或大规范热力学的关系和对比感兴趣,并初步了解了热力学概念在新领域的广泛应用如热核,热原子团簇和引力系统。微经典热力学描述了N体相空间的体积如何取决于全局守恒量,例如能量,角动量,质量,电荷等。由于这些限制,微经典合奏的行为可能与常规,经典或大经典合奏完全不同在许多重要的物理系统中。微规范系统在一阶相变时或在能量增加时或在外部或内部远程力(例如库仑,离心力或重力)下变得不均匀。因此,将系统破碎成不同密度和/或不同相的各个区域在空间上不均匀的分布是微经典合奏的真正特征。在这些情况下,大多数自然界中的现实系统已经实现了这种情况,微规范方法就是自然的统计描述。我们在四种不同的非平凡物理案例中研究了这种最基本的热力学形式:(I)在Potts模型中研究了一阶和二阶微规范相变。每个粒子的总能量是一个无波动的阶数参数,它控制系统所处的相位。与规范形式相反,微规范集合可通过改变共存区域来从一个相到另一个相通过共存相区域连续地调谐系统。能量平稳。共存相的配置携带有关相变性质的重要信息。由于规范合奏对这些配置视而不见,因此这更加显着。结果表明,可以从共存区域中状态T(E)的热量方程很好地确定有限系统确定的指定一阶相变的三个基本量-转变温度,潜热和相间表面熵。它们的值已经是仅类似于接近相应无限系统的30 * 30自旋的晶格。阐明了状态T(E)的热量方程反弯曲的重要性。它是有限隔离系统中一阶相变的信号。 (II)碎裂被证明是有限系统的一个特定的通用相变。计算了热核的状态T(E)的热量方程。可以通过T(E)中的异常明确地确定向碎片的相变。由于微规范热力学是一个完整的N体理论,因此它也确定了所有多体相关性。因此,对各种统计的多片段相关性进行了研究,从而深入了解了平衡机制的细节。 (III)中性原子团和多电荷原子团簇的断裂是微规范热力学实际应用的下一个例子。我们的模拟方法,即微经典的Metropolis Monte Carlo,结合了对碎片自由度的显式微观处理和对实验内部比热所描述的碎片内部自由度的隐式处理。这种微宏方法使我们能够研究更大片段的碎片化。多电荷金属团簇裂变的特征细节可通过不同的整体性质找到其解释。 (IV)最后,以二维排斥力的作用为例,讨论了强旋转核的碎裂作为微经典集合的例子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号