首页> 外文期刊>Physics of the Earth and Planetary Interiors: A Journal Devoted to Obsevational and Experimerntal Studies of the Chemistry and Physics of Planetary Interiors and Their Theoretical Interpretation >A new method to simulate convection with strongly temperature- and pressure-dependent viscosity in a spherical shell: Applications to the Earth's mantle
【24h】

A new method to simulate convection with strongly temperature- and pressure-dependent viscosity in a spherical shell: Applications to the Earth's mantle

机译:一种模拟具有强烈温度和压力依赖性的球壳中对流的新方法:在地幔中的应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We present a new finite volume code for modeling three-dimensional thermal convection in a spherical shell with strong temperature- and pressure-dependent viscosity. A new discretization formulation of the viscous term, tailored to the finite volume method on a colocated grid, enables laterally variable viscosity. A smoothed cubed-sphere grid is used to avoid pole problems which occur in latitude-longitude grids with spherical coordinates. The spherical shell is topologically divided into six cubes. The equations are formulated in primitive variables, and are treated in the Cartesian cubes. In order to ensure mass conservation a SIMPLER pressure correction procedure is applied and to handle strong viscosity variations of Delta eta = 10(7) and high Rayleigh numbers of Ra = 10(8) the pressure correction algorithm is combined with a pressure weighted interpolation method to satisfy the incompressibility condition and to avoid oscillatory pressure solutions. The model is validated by a comparison of diagnostical parameters of steady-state cubic and tetrahedral convection with other published spherical models and a detailed convergence test on successively refined grids. Lateral variable fluid properties have a significant influence on the convection pattern and heat flow dynamics. The influence of temperature- and pressure-dependent viscosity on the flow is systematically analyzed for basal and mixed-mode heated thermal convection in the spherical shell. A new method to classify the simulations to the mobile, transitional or stagnant-lid regime is given by means of a comparison of selected diagnostical parameters, a significantly improved classification as compared to the common surface layer mobility criterion. A scaling law for the interior temperature and viscosity in the stagnant-lid regime is given. Purely basal heating and strongly temperature-dependent rheology stabilize plume positions and yield with a weak time dependence of the convecting system, while the amount of additional internal heating controls the strength of time dependence. Strength and partitioning of basal and internal heat sources in the mantle seems to be of major importance to specify the dynamics of the flow field and therefore the evolution of the Earth and other planets. Additional pressure dependence strongly influences the dynamics even if the magnitude of pressure variation is relatively small. For an appropriate combination of pressure and temperature dependence we observe a kind of low and high viscosity zone in the asthenosphere and deep in the mantle. The viscosity-depth profile of such a flow shows striking similarities to viscosity profiles from inversion of seismic, geoid and post-glacial rebound data. (c) 2006 Elsevier B.V. All rights reserved.
机译:我们提出了一种新的有限体积代码,用于对球形壳中的三维热对流建模,该壳具有强的温度和压力相关粘度。针对共置网格上的有限体积方法量身定制的粘性术语的新离散化公式,可实现侧向可变的粘度。使用平滑的立方球体网格可以避免在具有球坐标的纬度-经度网格中出现极点问题。球形壳在拓扑上分为六个立方体。这些方程式用原始变量表示,并在笛卡尔立方体中处理。为了确保质量守恒,应用SIMPLER压力校正程序并处理Δeta = 10(7)和Ra = 10(8)的高瑞利数的强烈粘度变化,将压力校正算法与压力加权插值方法结合使用以满足不可压缩条件并避免产生振荡压力。通过比较稳态立方对流和四面体对流的诊断参数与其他已发布的球形模型并在逐次细化的网格上进行详细的收敛性测试来验证该模型。横向可变的流体性质对对流方式和热流动力学具有重大影响。对于球壳中的基础模式和混合模式加热对流,系统地分析了温度和压力相关粘度对流动的影响。通过选择诊断参数的比较,给出了一种将模拟分类为移动,过渡或停滞滑盖状态的新方法,与常用的表面层迁移率标准相比,分类方法得到了显着改善。给出了停滞盖状态下内部温度和粘度的比例定律。纯粹的基础加热和强烈依赖温度的流变性稳定了羽流的位置和产量,而对流系统的时间依赖性很弱,而额外的内部加热量则控制了时间依赖性的强度。地幔中基础热源和内部热源的强度和分配似乎对于确定流场的动力学以及地球和其他行星的演化至关重要。即使压力变化幅度相对较小,附加的压力依赖性也会强烈影响动力学。对于压力和温度依赖性的适当组合,我们在软流层和地幔深处观察到一种低粘度和高粘度区。这种流动的粘度-深度曲线显示出与地震,大地水准面和冰川后回弹数据反演的粘度曲线惊人相似。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号