首页> 外文学位 >Variable viscosity thermal convection at infinite Prandtl number in a thick spherical shell.
【24h】

Variable viscosity thermal convection at infinite Prandtl number in a thick spherical shell.

机译:厚球形壳中无限Prandtl数的可变粘度热对流。

获取原文
获取原文并翻译 | 示例

摘要

Variable viscosity thermal convection at infinite Prandtl number in a thick spherical shell is modeled using the finite element method. The discretized tensor Navier-Stokes equations are solved with the multigrid method applied to the spherical elements. Numerically convergent solutions can be obtained when specially tailored matrix dependent transfer is introduced in the multigrid method and line Jacobi relaxation is applied in the radial direction of the shell. The conjugate gradient method is used to correct both pressure and velocity fields simultaneously to satisfy the incompressibility condition. Numerical calculations are performed on a Cray T3D to investigate internally heated time dependent thermal convection for Rayleigh numbers between 10{dollar}sp5{dollar} and 10{dollar}sp6{dollar} with both Newtonian and non-Newtonian viscosity which can be dependent on temperature and pressure (depth). Linear downwellings and diffuse plume-like upwellings are dominant features in the numerical calculations. When Newtonian rheology is applied throughout the shell, depth- dependence of viscosity is the dominant rheological influence controlling the flow characteristics--lateral variation of viscosity plays a secondary role. Both a high viscosity lid and a viscosity increase below 660 km depth provide a general shift to lower harmonic degrees in both thermal anomalies and kinetic energy. With non-Newtonian rheology, narrow linear downwellings appear at the surface, and the upper boundary layer becomes very mobile. Thermal heterogeneities are greatly reduced throughout the shell. When non-Newtonian rheology is limited to the top 300 km as suggested by Karato and Wu (1993), the lateral flow increases because of the change in relative viscosity around downwelling regions at the transition depth. The downwelling network becomes more irregular and exhibits irregular plate-like characteristics. The planform of upwellings is also greatly affected by the large lateral flow and, in some case, shows narrow extended shapes. A significant increase in toroidal energy (toroidal-poloidal rms velocity ratio is 19-35% compared to less than 10% for Newtonian viscosity cases) is obtained with this hybrid rheology. The knowledge acquired from the simulations is applied to various depth regions in the global seismic tomography model proposed by Su et al. (1994) with a geodynamical interpretation.
机译:使用有限元方法对厚球形壳中无限Prandtl数下的可变粘度热对流进行建模。离散张量Navier-Stokes方程采用应用于球面单元的多重网格法求解。当在多重网格方法中引入专门定制的依赖于矩阵的传递并且在壳体的径向上应用线Jacobi松弛时,可以获得数值收敛解。共轭梯度法用于同时校正压力场和速度场,以满足不可压缩性条件。在Cray T3D上进行了数值计算,以研究内部加热时间相关的热对流,以研究牛顿粘度和非牛顿粘度在10 {dol} sp5 {dol}和10 {splar} sp6 {dol}之间的瑞利数。温度和压力(深度)。线性下涌和弥散羽状上涌是数值计算的主要特征。当牛顿流变学应用于整个壳体时,粘度的深度依赖性是控制流动特性的主要流变学影响,粘度的横向变化起着次要作用。高粘度的盖子和低于660 km深度的粘度增加都使热异常和动能都向较低的谐波度转移。在非牛顿流变学的情况下,在表面出现狭窄的线性下降流,并且上边界层变得非常易移动。整个外壳的热异质性大大降低。如Karato和Wu(1993)所建议的,当非牛顿流变学限制在最高300 km时,由于在过渡深度下流区周围相对粘度的变化,侧向流量增加。下行流网络变得更加不规则,并表现出不规则的板状特征。上升流的平面形式也受到很大的侧向流动的很大影响,在某些情况下,显示出狭窄的延伸形状。通过这种混合流变技术,可以显着提高环形能量(环形-极线均方根速度比为19-35%,而对于牛顿粘度情况,小于10%)。从模拟中获得的知识被应用于Su等人提出的全球地震层析成像模型的各个深度区域。 (1994年)的地球动力学解释。

著录项

  • 作者

    Yang, Woo-Sun.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Geophysics.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;
  • 关键词

  • 入库时间 2022-08-17 11:48:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号