首页> 外文期刊>Physics of plasmas >Calculation of Boozer magnetic coordinates for multiple plasma regions (with either closed or open flux surfaces) connected by magnetic separatrices
【24h】

Calculation of Boozer magnetic coordinates for multiple plasma regions (with either closed or open flux surfaces) connected by magnetic separatrices

机译:通过磁分离连接的多个等离子体区域(具有封闭或开放磁通面)的Boozer磁坐标的计算

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetic coordinates (psi(T)=radial label of flux surfaces, theta=poloidal, and phi=toroidal angle) are introduced in toroidal magnetoplasma equilibria in order to straighten the field lines [described by: theta-iota(psi(T))phi=constant on any flux surface, iota(psi(T)) being the rotational transform]. The simplest method for analyzing the ideal magnetohydrodynamic (MHD) stability expands the perturbed plasma displacement (xi) over right arrow in magnetic coordinates and solves the normal mode equation through one-dimensional (1D) radial finite elements. This paper extends the calculation of (Boozer) magnetic coordinates to simply connected equilibria that embed a magnetic separatrix, with regular X-points ((B) over right arrow not equal 0), and reach the symmetry axis, with singular magnetic X-points ((B) over right arrow =0). These configurations include multiple plasma regions, whose outermost one (surrounding plasma) is not composed by toroidal surfaces closed around a single magnetic axis. Two examples are chosen: (i) flux-core-spheromak (FCS) configurations, where the surrounding plasma is a screw pinch, with open flux surfaces; (ii) Chandrasekhar-Kendall-Furth (CKF) configurations, where it is a toroidal shell, carved by multiple toroidal plasma regions. This paper shows that a proper ordering of the radial coordinate psi(T), the requirement of continuity for theta and phi and an (iota) over bar matching condition (between neighboring mesh points on opposite sides of the connecting separatrix) resolve the ambiguities in the definition of magnetic coordinates in both CKF and FCS cases. However, a few metric coefficients diverge at the separatrices; therefore, often numerical MHD stability codes do not use magnetic coordinates there, but adopt local two-dimensional (2D) finite elements. This paper instead investigates all the divergences, in order to allow for the asymptotic analysis of (xi) over right arrow near the separatrices, with the purpose of maintaining the magnetic coordinate method and the 1D radial finite elements in the ideal MHD stability analysis. (C) 2005 American Institute of Physics.
机译:为了使磁场线变直,将磁坐标(psi(T)=磁通量表面的径向标记,theta =极地线,phi =环形角)引入磁场中,以拉直磁场线[描述为:theta-iota(psi(T)) phi =在任何通量表面上都是常数,iota(psi(T))是旋转变换]。分析理想磁流体动力学(MHD)稳定性的最简单方法是在磁坐标的右箭头上方扩展受扰动的等离子体位移(xi),并通过一维(1D)径向有限元求解法线模方程。本文将(Boozer)磁坐标的计算扩展到简单连接的平衡点,该平衡点嵌入了一个具有规则X点(右箭头上的(B)等于0的非对称点)的磁性分离线,并到达具有奇异磁性X点的对称轴(右箭头上的(B)= 0)。这些配置包括多个等离子体区域,其最外面的一个区域(周围的等离子体)不是由围绕单个磁轴闭合的环形表面组成的。选择两个示例:(i)磁通-磁芯-球状(FCS)配置,其中周围的等离子体是螺旋夹孔,具有开放的磁通表面; (ii)Chandrasekhar-Kendall-Furth(CKF)配置,它是一个环形壳,由多个环形等离子体区域雕刻而成。本文表明,径向坐标psi(T)的正确排序,对theta和phi的连续性的要求以及在条形匹配条件下(连接分隔线的相对两侧的相邻网格点之间)的(iota)可以解决图中的歧义。 CKF和FCS情况下的磁坐标定义。但是,一些度量系数在分离点上有所不同。因此,数字MHD稳定性代码通常不在那里使用磁坐标,而是采用局部二维(2D)有限元。相反,本文研究了所有差异,以允许对分离线附近的右箭头进行(xi)渐近分析,目的是在理想的MHD稳定性分析中维持磁坐标法和一维径向有限元。 (C)2005美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号