首页> 外文期刊>Physics of plasmas >Gain curves and hydrodynamic simulations of ignition and burn for direct-drive fast-ignition fusion targets
【24h】

Gain curves and hydrodynamic simulations of ignition and burn for direct-drive fast-ignition fusion targets

机译:直接驱动快速点火聚变靶的点火和燃烧的增益曲线和流体力学模拟

获取原文
获取原文并翻译 | 示例
       

摘要

Hydrodynamic simulations of realistic high-gain fast-ignition targets are performed, including one-dimensional simulations of the implosion and two-dimensional simulations of ignition by a collimated electron beam and burn propagation. These simulations are used to generate gain curves for fast-ignition direct-drive inertial confinement fusion. The minimum energy required for ignition is computed for fast-electron beams with a monoenergetic or Maxwellian distribution, generated by a constant or Gaussian laser pulse. It is found that realistic fast-ignition targets can be ignited by monoenergetic collimated electron beams with a radius of 20 mu m, duration of 10 ps, and energy of 15 kJ. Simulations using ponderomotive temperature scaling for fast electrons and Gaussian laser pulses predict a minimum laser energy for ignition of 235 kJ (105 kJ) for the energy conversion efficiency from the laser to fast electrons 0.3 (0.5) and the wavelength of 1.054 mu m. Such large energies are required because ultra-intense lasers are predicted to generate very energetic (multi-MeV) electrons with stopping distance exceeding the target size. The fast-electron energy, the stopping distance and the minimum energy required for ignition can be reduced using frequency-doubled laser pulses. Simulations of idealized cone targets are also performed in order to determine a lower bound of the gain deterioration due to the cone. (c) 2007 American Institute of Physics.
机译:进行了现实的高增益快速点火目标的流体动力学模拟,包括内爆的一维模拟和准直电子束点火和燃烧传播的二维模拟。这些模拟用于生成用于快速点火直接驱动惯性约束融合的增益曲线。计算具有恒定能量或高斯激光脉冲的单能量或麦克斯韦分布的快速电子束的点火所需的最小能量。已经发现,可以通过半径为20μm,持续时间为10 ps,能量为15 kJ的单能准直电子束来点燃现实的快速点火目标。对于快速电子和高斯激光脉冲,使用质动力温度定标进行的模拟预测,从激光到快速电子0.3(0.5)的能量转换效率和波长1.054μm的最小点火能量为235 kJ(105 kJ)。之所以需要这么大的能量,是因为预计超强激光会产生非常高能的(multi-MeV)电子,其停止距离超过了目标尺寸。使用倍频激光脉冲可以减少快速电子能量,停止距离和点火所需的最小能量。为了确定由于锥造成的增益衰减的下限,还执行了理想锥目标的仿真。 (c)2007年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号