首页> 外文期刊>Physics of plasmas >Magnetic Rayleigh-Taylor instability mitigation and efficient radiation production in gas puff Z-pinch implosions
【24h】

Magnetic Rayleigh-Taylor instability mitigation and efficient radiation production in gas puff Z-pinch implosions

机译:气喘Z捏内爆中的磁瑞利-泰勒不稳定性减轻和有效辐射产生

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Large radius Z-pinches are inherently susceptible to the magnetic Rayleigh-Taylor (RT) instability because of their relatively long acceleration path. This has been reflected in a significant reduction of the argon K-shell yield as was observed when the diameter of the load was increased from 2.5 to +AD4-4 cm. Recently, an approach was demonstrated to overcome the challenge with a structured gas puff load that mitigates the RT instability, enhances the energy coupling, and leads to a high compression, high yield Z-pinch. The novel load consists of a +ACI-pusher,+ACI- outer region plasma that carries the current and couples energy from the driver, a +ACI-stabilizer,+ACI- inner region plasma that mitigates the RT growth, and a +ACI-radiator,+ACI- high-density center jet plasma that is heated and compressed to radiate. In 3.5-MA, 200-ns, 12-cm initial diameter implosions, the Ar K-shell yield has increased by a factor of 2, to 21 kJ, matching the yields obtained on the same accelerator with 100-ns, 2.5-cm-diam implosions. Further tests of such structured Ar gas load on -6 MA, 200-ns accelerators have achieved +AD4-80 kJ. From laser diagnostics and measurements of the K-shell and extreme ultraviolet emission, initial gas distribution and implosion trajectories were obtained, illustrating the RT suppression and stabilization of the imploding plasma, and identifying the radiation source region in a structured gas puff load. Magnetohydrodynamic simulations, started from actual initial density profiles, reproduce many features of the measurements both qualitatively and quantitatively. (C) 2007 American Institute of Physics.
机译:大半径Z形夹由于其相对较长的加速路径而固有地易受磁瑞利泰勒(RT)不稳定的影响。如负载直径从2.5厘米增加到+ AD4-4厘米时所观察到的,这已反映为氩K壳产量的显着降低。最近,一种方法被证明可以克服结构化气体抽吸的挑战,该方法减轻了RT的不稳定性,增强了能量耦合,并导致了高压缩,高产量的Z型捏合。新型负载包括一个+ ACI推子,一个+ ACI-外部区域等离子体(该电流承载电流并耦合来自驱动器的能量),一个+ ACI稳定器,+ ACI-内部区域等离子体(可缓解RT增长)和一个+ ACI -辐射器,+ ACI-高密度中心射流等离子体,被加热并压缩以辐射。在3.5MA,200ns,12cm的初始直径内爆中,Ar K壳的产量增加了2倍,达到21kJ,与在相同加速器上获得的100ns,2.5cm的产量相匹配直径内爆。在-6 MA,200 ns的加速器上对这种结构化Ar气体负载进行的进一步测试已实现+ AD4-80 kJ。通过激光诊断和对K壳以及极紫外辐射的测量,获得了初始气体分布和内爆轨迹,说明了RT抑制和内爆等离子体的稳定作用,并确定了结构化的粉扑载荷中的辐射源区域。磁流体动力学模拟从实际的初始密度分布开始,从质和量上重现了测量的许多特征。 (C)2007美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号