首页> 外文期刊>Physics of plasmas >Global energy confinement scaling predictions for the kinetically stabilized tandem mirror
【24h】

Global energy confinement scaling predictions for the kinetically stabilized tandem mirror

机译:动态稳定串联镜的整体能量约束缩放预测

获取原文
获取原文并翻译 | 示例
           

摘要

Transport is studied for the kinetically stabilized tandem mirror, an attractive magnetic confinement device for achieving a steady-state burning plasma. For a magnetohydrodynamic stable system, three different radial transport models with Bohm, gyro-Bohm, and electron temperature gradient (ETG) scaling are derived. As a conservative estimate, numerical coefficients in the models are taken to be consistent with tokamak and stellarator databases. The plug mirrors create an ambipolar potential that controls end losses, whereas radial losses are driven by drift wave turbulence, which lowers the electron temperature through radially trapped particle modes and ETG transport losses. The radial transport equations are analyzed, taking into account the Pastukhov energy and particle end losses. For mirror ratio R-m=9 and a large density ratio between plug and central cell regions, there is a high axial ion confinement potential phi(i)/T-i 1, as demonstrated in the GAMMA-10 by Cho [Nucl. Fusion 45, 1650 (2005)]. Profiles and total energy confinement times are calculated for a proof-of-principle experiment (length L=7 m, central cell magnetic field B = 0.28 T, and radius a = 1 m) and for a test reactor facility (L = 30 m, B = 3 T, a = 1.5 m). For these parameter sets, radial loss dominates the end losses except in the low temperature periphery. In the limit of negligible radial losses, ideal ignition occurs at T-i = 7.6 keV from the two-body power end losses. The transport suppressing rotation rate is well below the sonic value and scales similarly to biased wall rotation rates in the Large Plasma Device experiments [Horton , Phys. Plasmas 12, 022303 (2005)]. Simulation results show that the positive dependence of electron radial transport with increasing electron temperature stabilizes the thermal instabilities giving steady state with T-i = 30-60 keV and T-e = 50-150 keV with a fusion amplification Q of order 1.5 to 5.0. (c) 2006 American Institute of Physics.
机译:研究了动力学稳定的串联镜的运输,该镜是实现稳态燃烧等离子体的有吸引力的磁性限制装置。对于磁流体动力稳定系统,得出了三种不同的径向传输模型,分别具有Bohm,陀螺-Bohm和电子温度梯度(ETG)缩放比例。作为保守估计,模型中的数值系数被认为与托卡马克和恒星数据库一致。插塞镜产生控制端部损耗的双极性电势,而径向损耗则由漂移波湍流驱动,这会通过径向捕获的粒子模式和ETG传输损耗降低电子温度。分析了径向输运方程,同时考虑了Pastukhov能量和颗粒末端损失。对于镜比R-m = 9以及在塞子和中央单元区域之间的大密度比,存在高的轴向离子约束电位phi(i)/ T-i 1,如Cho [Nucl.GAMMA-10]所述。 Fusion 45,1650(2005)]。计算曲线和总能量约束时间用于原理验证实验(长度L = 7 m,中心电池磁场B = 0.28 T,半径a = 1 m)和测试反应堆设施(L = 30 m) ,B = 3 T,a = 1.5 m)。对于这些参数集,径向损耗在最终损耗中占主导地位,低温外围除外。在可忽略的径向损耗极限内,理想的点火发生在两体电源端损耗的T-i = 7.6 keV处。抑制运输的旋转速率远低于声波值,并且在大型等离子设备实验中与偏壁旋转速率相似地缩放[Horton,Phys。 Plasmas 12,022303(2005)]。仿真结果表明,随着电子温度的升高,电子径向传输的正相关性稳定了热不稳定性,从而使热稳定性达到T-i = 30-60 keV和T-e = 50-150 keV,并且融合放大Q为1.5到5.0。 (c)2006年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号